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Abstract

Given the growing need for managing financial risk and the recent global crisis, risk prediction

is a crucial issue in banking and finance. In this paper, we show how recent advances in the

statistical analysis of extreme events can provide solid methodological fundamentals for modeling

extreme events. Our approach uses self-exciting marked point processes for estimating the tail

of loss distributions. The main result is that the time between extreme events plays an important

role in the statistical analysis of these events and could therefore be useful to forecast the size and

intensity of future extreme events in financial markets. We illustrate this point by measuring the

impact of the subprime and global financial crisis on the German stock market in extenso, and

briefly as a benchmark in the US stock market. With the help of our fitted models, we backtest

the Value at Risk at various quantiles to assess the likeliness of different extreme movements on

the DAX, S&P 500 and Nasdaq stock market indices during the crisis. The results show that

the proposed models provide accurate risk measures according to the Basel Committee and make

better use of the available information.
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1. Introduction

While the majority of European countries are experiencing a debt crisis, Germany has been

enjoying the biggest economic boom with an extraordinary trade surplus sice the global crisis of

2008. Although Germany was initially hit hard by the global financial crisis, its exports helped

the country’s economy recover once the worst was over. The Deutscher Aktien Index, or DAX,
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is Germany’s primary blue chip stock index and is also on course to complete its best year since

2003, reaching a new peak of 8530.89 on May 20, 2013, surpassing its previous high mark seen

on July 13, 2007.

Germany is the largest individual European economy; thus, the DAX is considered to be the

most important index in Europe, which in turn makes it highlyinfluential throughout the finan-

cial world. However, every financial crisis brings extreme losses to the world stock market, and

attempts are made to minimize these as much as possible. For instance, one of these extreme

losses occurred on June 4, 2012, when the DAX index dropped below 6000 points following the

announcements of Spain and Italy’s troubled banking sectors. This created extreme price move-

ments not only in the stocks and indices of these countries but also to those across the European

Union. A black year for the DAX stock market index was 2008, with five of the most extreme

losses in its 25-year history. The DAX index lost more than 7%on each of those days, as for

example, a drop of 523.98 points (7.16%) on January 21, 2008,which was attributable to steep

losses in the financial industry of US$1.45 billion of investments by the German Bank WestLB.

Several authors (Chavez-Demoulin and McGill, 2012; Santos and Alves, 2012; Allen et al.,

2013; McAleer et al., 2013; de Jesus et al., 2013; Hammoudeh et al., 2013; Santos et al., 2013)

have argued that extreme value theory (EVT) allows us to explicitly take into account the ex-

treme events contained in the tail distribution of losses. This provides three main advantages over

classical methods, such as conditional models on volatility, historical simulations or the Gaussian

distribution approach. First, as it is a parametric method,we can extrapolate the behavior of the

tails to extreme levels, e.g., Value at Risk (VaR) estimations. Second, EVT focuses only on mod-

eling the tail behavior of a loss distribution using only extreme values rather than the whole data

set. Third, as we do not assume a particular model for returns, we propose a data-based approach

to fit the distribution tails.

Unfortunately, EVT presumes independent identically distributed (i.i.d) observations, with

stylized facts of stock market returns, such as clustered extremes and serial dependence, whereas

the three worst daily losses in the DAX during October 2008 with losses greater than 7% typically

violated this assumption. These problems are often addressed by the application of a declustering

method, and then the standard model is fitted to the cluster maxima only. However, the drawback

of these approaches is the information loss contained in these clusters (see Smith and Weissman,

1994; Laurini and Tawn, 2003; de Jesus et al., 2013). Anotheralternative is to apply a general-

ized autoregressive conditional heteroskedasticity (GARCH) or stochastic volatility model to the

returns and then use EVT in the residuals (see, for example, McNeil and Frey, 2000; Allen et al.,

2013; Santos et al., 2013).
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In response to the stylized facts of extreme events in financial markets, a new line of research

has emerged that incorporates the clustering behavior of these extreme events into the model. In

particular, Chavez-Demoulin et al. (2005) propose a self-exciting version of the peaks over thresh-

old (POT) model, the so-called Hawkes-POT model, while Herrera and Schipp (2013) introduce

another alternative approach, the autoregressive conditional intensity POT (ACD-POT) model.

Another similar idea is to include the inter-exceedance times (the time between extreme events)

as covariates in the POT approach, the duration-POT (DPOT) approach, introduced by Santos and

Alves (2012). The main advantage of these models is that the clustering behavior of extreme events

is taken into account, making better use of the information given by the data to drive improvement

in the estimation and forecast of different risk measures.

The contribution of this paper is twofold. First, we introduce new models whose main feature

is to directly model extreme events above a high threshold previously defined, regardless of the

cluster behavior demonstrated by extreme events in financial markets. Specifically, we raise the

question whether the inter-exceedance times can contribute to the measurement accuracy of market

risk in financial markets. In particular, whether the inter-exceedance times should be included as

covariates to describe the size of the extreme events (DPOT,Hawkes-DPOT and ACD-DPOT

model) or whether this should be included in terms of their intensities (Hawkes-POT and ACD-

POT). To the best of our knowledge, no prior study has analyzed this issue to provide better

measures of market risk. Second, Germany is one of the most important and the largest economies

in the euro zone; therefore, we analyze the returns of the DAXindex during the recent turmoil

periods using the proposed models and compare these resultswith two leading US stock market

indices, S&P 500 and Nasdaq, during the same time period.

The main conclusion is that while time observations play an important role in irregularly

spaced data, the same occurs with inter-exceedance times inthe statistical analysis of extreme

events for financial markets. Roughly speaking, while Basel rules (Basel Committee on Banking

Supervision, 2006) count the number of VaR exceptions, the proposed self-exciting marked point

process (SEMPP) approach takes into account the time when the extreme events occur. In this

way, the models capture the cluster behavior of these eventscorrecting for possible inadequacy

of risk models due to financial fluctuations, which by nature are extremely complicated during a

crisis period. Furthermore, the SEMPP approach meets threedesirable features that enhance the

accuracy of the risk measures and raise the standard of risk management: the expected frequency

of violations is in line with the selected confidence level, absence of dependence among VaR vio-

lations, and a quick reaction to changes in volatilities during the crisis period, avoiding violation

clustering. Actually, these aspects are fully met by our methodological proposal and therefore
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provide strong support for the validity of the empirical analysis.

This paper is organized as follows. Section 2 introduces theframework for extreme events

from the point of view of SEMPP. Section 3 presents the empirical analysis of the DAX index.

This section includes a preliminary analysis of the stylized facts associated with extreme events

in this market and the results of modeling and backtesting the returns of this stock market index

during the subprime crisis. Section 4 includes a short analysis of US stock market indices during

the same period with the aim of getting more research evidence and an in-depth understanding of

the cluster behavior of extreme events during the crisis period in both countries. Conclusions and

discussions are presented in Section 5.

2. Self-exciting marked point processes in EVT

In this section, we summarize the results for the POT approach from the point of view of the

SEMPP theory, which underlies our modeling. General literature on the subject of EVT include

Chavez-Demoulin et al. (2005); Herrera and Schipp (2009); Chavez-Demoulin and McGill (2012)

and Herrera and Schipp (2013). From a practical point of view, suppose that we have observed

the returns of a known stock market whose behavior is not necessarily i.i.d1. Now, imagine that

we have only recorded the information of the most extreme events, that is, all the time eventst

whose magnitudesy have exceeded a high thresholdu, previously defined. Thus, we obtain a set

of events{(ti ,yi)}i≥1, which are defined in the space2 [0,1)× [u,∞). Under this point of view,

the magnitudesyi correspond to the marks, which carry information about the occurrence timesti
and whose internal history is given byHt := {(ti ,yi) : i = 1, . . . ,N(t)−1} Thus, this set of events

defines a marked point processN(t) := ∑i≥1 {ti≤t,yi} whose conditional intensity is defined by

λ (t,y | Ht) = lim
△t→0+

1
△t

P(N([t, t +△t)×y)> 0 | Ht)

or alternatively

λ (t,y | Ht) = λg(t | Ht)g(y | Ht , t) , (2.1)

whereλg(t | Ht) is a conditional intensity that describes only the behaviorof the arrival timest

of these extreme events, named the ground process, whileg(y | Ht , t) corresponds to the prob-

ability density function of the exceedances, which in our case is a generalized Pareto density

function according to the Pickands–Balkema–de Haan theorem(see Pickands III, 1975; Balkema

and De Haan, 1974):

1As a convention in this paper, a negative value is treated as apositive number and extreme events take place when
losses are part of the right tail of the distribution.

2Note that we defined the time interval between 0 and 1 for ease of exposition.
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g(y | Ht , t) =











1
β (y|Ht ,t)

(

1+ξ y−u
β (y|Ht ,t)

)−1/ξ−1
, ξ 6= 0

1
β (y|Ht ,t)

exp
(

− y−u
β (y|Ht ,t)

)−1/ξ−1
, ξ = 0,

, (2.2)

whereβ (y | Ht , t) is a scale parameter conditional on the history of the process andξ is the shape

parameter.3 We consider only the scale parameter to be conditional because different empirical

analyses have shown that it is reasonable to allow the shape parameter to remain constant (see

Chavez-Demoulin et al., 2005; Chavez-Demoulin and McGill, 2012; Herrera, 2013; Santos and

Alves, 2012; Santos et al., 2013). Finally, since the conditional intensity can also depend on the

history of the processHt , these types of models are called self-excited (see Daley and Vere-Jones,

2003 for a more formal introduction to SEMPP).

Observe that for SEMPP models, the estimation of the VaR can be directly obtained. Indeed,

the VaR at theα confidence level is the smallest value zt+1
α for which the probability that the next

observation period forYt+1 will exceedz is not more thanα using the information observed up to

time t, which is the solution toP
(

Yt+1 > Zt+1
α | Ht

)

= 1−α. This probability can be estimated as

follows:

P
(

Yt+1 > zt+1
α | Ht

)

= P(Yt+1 > u | Ht)P
(

Yt+1−u> zt+1
α |Yt+1 > u,Ht

)

= [1−E{N ([t, t +1) = 0 | Ht)}]G(y | Ht , t)

=

{

1−exp

(

−

ˆ t+1

t
λg(l | Hl )dl

)}

G(y | Ht , t)

≈ λg(t | Ht)×G(y | Ht , t) ,

whereG(y | Ht , t) corresponds to the survival function of the cumulative distribution function of

(2.2), the generalized Pareto distribution (GPD) function. Thus, to solve this equation for an event

higher thanu, the VaR is defined by

VaRt+1
α = u+

β (t,y | Ht)

ξ

{

(

λg(t | Ht)

1−α

)ξ
−1

}

. (2.3)

The last equation implies that the VaR is only defined for our models if λg(t | Ht) > 1− α.

Thus, the time when these extreme events occur as well as the dynamic behavior of these inter-

exceedances can play a role in describing the future behavior of new extreme events. The log-

likelihood L of the events{(ti ,yi)}i≥1 in a set[0,T]× [u,∞) is given in terms of the conditional

3This density function is well-defined foru≤ y< yF , whereyF is the right endpoint with valuesyF = ∞ if ξ > 0
andyF =−β (y | Ht , t)/ξ if ξ < 0.
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intensity for the ground process and density for the marks asfollows:

L =
N(T)

∑
i=1

logλg(ti | Ht)−

ˆ T

0
λg(s | Hs)ds+

N(T)

∑
i=1

logg(yi | Ht , t) . (2.4)

Observe that in the case of independence between the ground process and the density of the marks,

the log-likelihood could be split and estimated separately. Furthermore, in the case that our obser-

vations were i.i.d random variables, the number of exceedances over this thresholdu should follow

a Poisson process and, therefore, the intensity of the ground processλg(t | Ht) would be constant,

while the marks are modeled by an unconditional GPD (for a detailed explanation see Herrera and

Schipp, 2013).

The particular feature of the SEMPP approach is the representation of the conditional intensity

for the ground process as a sum of contributions from all previous time events. In this paper,

we consider two SEMPP models, the Hawkes-POT model introduced in Chavez-Demoulin et al.

(2005)4 and the ACD-POT model proposed by Herrera and Schipp (2013). Another interesting

alternative, which we also wish to consider, is the so-called DPOT model introduced in Santos and

Alves (2012). The DPOT is not directly a SEMPP but a one-dimensional point process with inter-

exceedance time covariates, which introduce an autoregressive influence on the scale parameter of

the marks.

2.1. The Hawkes-POT model

The Hawkes-POT model is obtained by parameterizing the intensity of the ground process

λg(t | Ht) and the scale parameterβ (y | Htt) by means of a Hawkes process (Hawkes, 1971) as

follows:

λg(t | Ht) = k+φ ∑
i:ti<t

exp{δyi − γ (t − ti)} (2.5)

and

β (y | Ht , t) = β0+η ∑
i:ti<t

exp{δyi − γ (t − ti)} ,

respectively. Under this parametrization all parameters are positive,k andβ0 represent the baseline

rate of events, which in most applications is assumed to be constant in time, whileφ andη are

impact parameters related to the new extreme events. In other words, an extreme event increases

4See also Herrera and Schipp, 2009; Chavez-Demoulin and McGill, 2012 for new applications.
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the chance of attaining other extreme events immediately afterward, then decreases exponentially

to the baseline rate of events, displaying a monotone decreasing behavior.

2.2. The ACD-POT model

The second specification is the ACD-POT approach where the conditional intensity of the

ground process is driven by a self-excited function that is updated at each extreme event of the

process. These types of specifications were proposed by Herrera and Schipp (2013) in the context

of EVT. This type of model is a mixture between the classical POT model and the autoregressive

conditional duration (ACD) model (see Engle and Russell, 1998). The conditional intensity of

the ground point process of exceedances for this approach depends only on a fixed number of

the most recent inter-exceedance timesxi = ti − ti−1 and the expected conditional durationψi ≡

E [xi | xi−1, . . . ,x1] of all information up to and including timeti−1:

xN(t) = ψN(t)εN(t),

whereεi are i.i.d random variables. In particular, we consider a logarithmic ACD (Log-ACD)

model, introduced by Bauwens and Giot (2000) in order to prevent ψ becoming negative, in which

the autoregression bears on the logarithm of the conditional expected duration

ψN(t) = exp
{

w+alogxN(t)−1+blogψN(t)−1
}

.

The ground processλg(t | Ht ;θ) for this type of model can be expressed as a multiplicative effect

between the baseline hazard functionλ0(·) of the random variableε and a shift given by the

expected duration

λg(t | Ht) = λ0

(

t − tN(t)

ψN(t)

)

1
ψN(t)

. (2.6)

In this paper, we propose the Burr distribution (see Grammig and Maurer, 2000) for the random

variableε, which displays a flexible non-monotonic hazard function taking a bathtub-shaped or

inverted U-shaped form. The density function is defined by

f (x | λ ,k,γ) =
λktk−1

(

1+ γ2λ tk
)γ−2+1

.

Let λ = 1 andφi = ψi
γ2(1+ 1

k)Γ(γ−2+1)
Γ(1+ 1

k)Γ(γ−2− 1
k)

, where 0< γ−2 < k . Then, the implied conditional intensity

function for the ground process is given by
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λg(t | Ht) =
kφ−k

N(t)

(

t − tN(t)
)

k−1

1+ γ2φ−k
N(t)

(

t − tN(t)
)

k
. (2.7)

In addition, for the scale parameterβ (y | Ht , t), we consider a linear parametrization such that it

depends on the history of the process, as in the Hawkes-POT model

β (y | Ht , t) = β0+β1λg(t | Ht).

This type of parametrization has shown the best results in empirical studies (for example, see

Herrera and Schipp, 2013; Herrera, 2013).

2.3. The Hawkes-DPOT and ACD-DPOT models

For the above models, we observe that one of the main ingredients is the scale modeling in

the GPD. The economic interpretation for those specifications is that in a period of turmoil the

scale parameter in the density of the marks is influenced by the temporal conditional intensity of

the ground process; therefore, the estimated conditional GPD mean follows the path of the ground

process.5 Based on a similar idea, Santos and Alves (2012) propose characterizing the expected

mean and variance of the marks by means of covariates of inter-exceedance times. In particular,

they observed that short inter-exceedance times display a higher mean and variance than long inter-

exceedance times, which in turn suggest an inverse relationship between the size of the marks and

inter-exceedance times. For a general overview of EVT including the use of explanatory variables,

see Coles (2001).

Once again, definexi = ti − ti−1 as the most recent inter-exceedance time between two extreme

events, withx(t) = t − ti being the backward recurrence time andN(t) the counting process of

exceedances att. Notice thatx(ti) = ti − ti−1 = xi. Alternatively, the authors propose using the

information of the lastv inter-exceedance times,6 that is,x(t)v = t − tN(t)−v, as covariates of the

scale parameter as follows:

β (y | Ht , t) =
β0

{x(t)v}
β1
,

whereβ0 > 0 andβ1 ≥ 0. Observe that they only model the marks while for the groundprocess

they assume that this follows a Poisson process of exceedances with a constant rate given by the

expected number of extreme eventsNu divided by the size of the sampleN, λg = Nu/N. We

propose two other alternatives based on the DPOT model for the GPD of the marks but include the

5Indeed, the mean of the conditional GPD is given by
(

β0+η ∑i:ti<t exp{δyi − γ (t − ti)}
)

/(1− ξ ) for the
Hawkes-POT model andβ0+β1λg(t | Ht)/(1−ξ ) for the ACD-POT model.

6Observe thatx(t)v = x(t)+xN(t)−1+ · · ·+xN(t)−v+1 = t − tN(t)−v, and therefore,x(ti)v = ti − ti−v = xi,v
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dynamic behavior of the Hawkes and ACD approaches to model theinter-exceedance times in the

ground process. The conditional intensity for these two alternatives is given by

λ (t,y | Ht) = λg(t | Ht)
{x(t)v}

β1

β0

(

1+ξ
y−u

β0
{x(t)v}

β1

)−1/ξ−1

, (2.8)

whereλg(t | Ht) is replaced here by (2.5) or (2.6) depending on whether we want to estimate the

Hawkes-DPOT or the ACD-DPOT, respectively.7

3. Empirical analysis of the DAX index

3.1. Data description

Our data set consists of daily returns defined byrt = −100log(pt/pt−1), wherept denotes

the value of the DAX index at dayt over a sample period from January 2, 1991 to January 18,

2008; on January 21, 2008, global stock markets suffered their biggest falls since September 11,

2001. Observe that we concentrate only on the losses. A second sample is used for backtesting

the estimation of the different risk measures in the DAX index from January 21, 2008 to June 30,

2013. We update daily the new information that becomes available for the parameter estimates

previously obtained. Thus, we dynamically adjust the models, which allows us to improve as

accurately as possible the estimation of the risk measures.

An important point is the choice of the threshold, which implies a balance between bias and

variance. The threshold must be set high enough so that exceedances have a GPD. In this paper

we choose to work with 8% of the maxima of the sample. This threshold selection is based on

the stability of the shape parameter, which influences directly the risk measures estimates (see

Chavez-Demoulin and McGill, 2012; Herrera, 2013 for other alternatives). A detailed description

of the methodology used can be found in Appendix A.

In order to better understand the empirical application, itis worth looking briefly at the basic

characteristics of the extreme events that we want to analyze. In Table 1 in the Appendix, we find

some descriptive statistics of the daily returns for the DAXindex. The mean return is close to zero

and it differs considerably in terms of standard deviation,skewness and kurtosis of a normally

distributed random variable. In particular, the returns ofthe DAX index exhibit a high kurtosis.

The assumption of normally distributed returns is stronglyrejected through the Jarque-Bera test.

Other assumptions, such as the null hypothesis that the returns series are i.i.d random variables as

well as the returns have a unit root, are strongly rejected.

7Observe that for ease of exposition we assume thatξ 6= 0. The case whereξ = 0 can be obtained similarly.
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<Insert Figure 1 about here>

Relating stylized facts of the most extreme events, Figure 1 displays some of the most im-

portant events for the DAX index during the in-sample period, for example, the Asian financial

crisis in 1997, the collapse of the Long-Term Capital Management (LTCM) hedge fund in 1998,

the dot.com Bubble in 2000 and the September 11, 2001 terror attacks, among others. On the

right side of the top panel, we observe in detail the most extreme losses for this index (8% of

the most important losses), whose clusters are evident around the year 2000. In particular, the

left side of the bottom panel in Figure 1 shows strong evidence of an autocorrelation between

the inter-exceedance times for the data analyzed. Another interesting stylized fact described by

Santos and Alves (2012) is the apparent relationship between the size of the marks and the inverse

of past inter-exceedance times. In our case, we found a strong positive correlation between them,

in particular, this relationship (Pearson correlation 0.42) was stronger when we considered the

whole inter-exceedance times preceding the last three events, xi,3 = ti − ti−3. Summarizing, styl-

ized facts, such as clusters of extremes, dependence among inter-exceedance times and the size of

marks, support the use of the proposed models.

3.2. Evaluation framework

We compare the models using the goodness of fit and a number of statistical accuracy tests for

the VaR in-sample and in the backtest.

For the goodness of fit we employ

• W-statistic (Smith, 2003). This test assesses the successin modeling the temporal behavior

of the exceedances. The W-statistic is defined by

W = ξ−1 ln

(

1+ξ
y−u

β (y | Ht , t)

)

.

This statistic states that if the GPD parameter model is correct, the residuals are approxi-

mately independent unit exponential variables. For this reason, we test if the residuals are

approximately independent by means of a Box-Ljung test (BLW) and if they are unit expo-

nential variables through a Kolmogorov-Smirnov test (KSW).

For the statistical accuracy tests for the VaR we consider

• Unconditional coverage test (LRuc). The idea is to test whether the fraction of violations

obtained for a particular risk measure is significantly different from the theoretical one. A
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violation It+1 of the VaR for the dayt + 1 is defined as occurring when the returnrt+1 is

higher than the VaR as follows:

It+1 =







1 if rt+1 >VaRt+1
α

0 if rt+1 ≤VaRt+1
α .

• Test of independence between violations of the VaR (LRind). Under the null hypothesis, a

violation today has no influence on the probability of a violation tomorrow. Christoffersen

(1998) suggests this test of independence by modeling the number of violations as a binary

first-order Markov chain.

• Conditional coverage test (LRcc). This is a combination of the unconditional coverage test

and the test of independence in order to test correct conditional coverage. For more details

on the estimation of theLRuc, LRind andLRcc tests, we refer to Christoffersen (1998).

• Dynamic Quantile tests (DQhit andDQVaR). Engle and Manganelli (2004) propose examin-

ing whether the Hits on the VaR (Hit i = Ii −α) for the present period are uncorrelated with

the above Hits and/or VaR estimates by means of a logit model.8 In our approach for the

first case, denoted by theDQhit the regressor vector contains only a lagged violation of the

VaR

Hitt+1 = a+bHitt +et ,

while the second test,DQVaR, uses the contemporaneous VaR estimate

Hitt+1 = a+b1Hitt +b2VaRt
α +et .

Under the null hypothesis,H0 = b = 0, the regressors should have no explanatory power.

3.3. Empirical results in-sample for the DAX index

Having investigated the characteristics of the financial series, we can now turn to a comparative

analysis of the SEMPP proposed in the previous sections. We estimate all models proposed in

Section 2, optimizing the log-likelihood function (2.4).9

We estimate eight models: one model each for Hawkes-POT and ACD-POT and two models

for the DPOT, Hawkes-DPOT and ACD-DPOT approaches. According to Santos and Alves (2012)

8Observe that the sequenceHit i is the de-meaned process onα associated withIt .
9We use the optimx package in R (Nash and Varadhan, 2011), which allows for different strategies of optimization

of the maximum likelihood.
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and Santos et al. (2013), better results are obtained when wechoose the parameterβ1 in the interval

between 0.7 and 0.8 instead of estimatingβ1 by means of the log-likelihood function. For this

reason, we consider two models for DPOT, Hawkes-DPOT and ACD-DPOT, one with a fixedβ1

and the other estimated by maximizing the log-likelihood. In the empirical application, aβ1= 0.75

exhibits better results according to theLRuc test.

Results of the estimation are summarized in Table 2. Observe that the models are not directly

comparable in terms of goodness of fit, especially the DPOT approaches. For this reason we

compare them in terms of the performance in the estimation ofthe VaR and the goodness of fit

for the GPD. However, we include the AIC and BIC statistics forcompleteness. Only the ACD-

POT (DPOT) and Hawkes-POT(DPOT) are directly comparable. According to these results, the

Hawkes-DPOT and the ACD-DPOT model exhibit the best fit.

<Insert Figure 2 about here>

Relating the statistical accuracy tests for the VaR, Figure 2 displays the results in-sample for

the estimates of VaR at the 0.99 confidence level. At first glance, Figure 2 indicates that the VaR

estimates are very similar while the violations are not found at the crisis period, which could

indicate some kind of bias in the model. Table 3 reports the results for all tests at three confidence

levels for the VaR: 0.95, 0.99 and 0.999. Entries in columns are the significance levels (p-values)

of the respective tests, with the exception of levelα and the number of violations at the VaR. We

observe that the DPOT, Hawkes-DPOT and ACD-DPOT, estimated with parameterβ1 not constant,

seem to be less variable through time in comparison with the rest of the models. However, the

results of accuracy of the VaR estimates in Table 3 show that indeed two of these models, Hawkes-

DPOT and ACD-DPOT, display the best performance with a total of 14 of 15 tests approved. The

only model with similar performance is the standard ACD-POT.In relation to the goodness of fit

of the GPD for the marks, the models where parameterβ1 was not estimated displayed a poor fit

according to the W-statistic (BLW andKSW), in constrast to the results obtained by Santos and

Alves (2012).

Summarizing, models with a ground process whose conditional intensity is characterized by

a Hawkes or ACD and whose marks follow a DPOT approach display the best performance in-

sample. Nevertheless, more important is the accuracy of thebacktests produced by the proposed

risk models. A systematic evaluation of the accuracy of the forecasts generated by these models is

given in the next subsection.
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3.4. Backtesting the models

To evaluate the performance of the VaR models, backtesting was carried out with the daily

returns from January 21, 2008 to June 30, 2013. On each day during the backtesting, we fitted the

eight models introduced above, then we reestimated the VaR daily for each return series according

to (2.3) . Table 2 also reports the results on the VaR backtesting exercise.

An important year for the backtest period is 2008, which encompasses five of the worst trading

days since the beginning of the DAX index in 1989. The first oneis January 21 with -7.164%.

The next three are October 6, 10 and 15, with a change in percentage of -7.073, -7.012 and -6.493,

respectively. The last one was October 15 with a percent change of -6.838. Moreover, 36 extreme

events of the whole backtesting sample are found in this year.

Figure 3 displays the results for the backtesting for a VaR with a confidence level 0.99. Overall,

the performance of the models for at least the unconditionalcoverage seem to fit satisfactorily,

especially for 2008, the year of the subprime crisis. Indeed, the number of violations for this year

was never higher than three, with one, of course, in October 2008.

<Insert Figure 3 about here>

Deeper analysis of Table 2 shows that all models, even with a fixed parameterβ1, approve

most tests for VaR accuracy. The most important difference is related to the results obtained for

the dynamic quantile testDQVaR for the confidence level 0.95. Notice that for all models whose

ground process were kept constant or had a Hawkes’ type, we found some kind of autocorrelation

between the violation and the most recent estimate for the VaR. However, according to the “traffic

light” approach, the SEMPP models are all classified in the green zone (see Basel Committee on

Banking Supervision, 2006).

4. Contrasting German and US stock markets

In view of the recent financial crisis, it seems to be clear that international linkages among

financial institutions may explain contagion transmissioncross country and the role of the US

market as a leader among the world’s stock markets (Mandilaras and Bird, 2007; Lee and Chang,

2013; Dimpfl and Peter, 2014; Yamamoto, 2014). Similarly, Germany is one of the most important

and the largest economies in the euro zone.

Concerning linkages between the German and US stock markets,to the best of our knowl-

edge there are few studies assessing the relative importance of contagion and interdependence
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between them. Baur and Jung (2006) investigate spillovers and correlations around the opening

of both stock markets. Flad and Jung (2008) using high-frequency data identify a common trend

shared by German and US stock markets and show that the US market is the driving force in the

transatlantic system of stock indices. Bonfiglioli and Favero (2005) found evidence of short-term

interdependence and contagion between both markets and show that the effect of fluctuations of

the US stock market on the German stock market exhibits a non-linear behavior.

In this section we contrast our results obtained for the DAX index returns with two of the

most important US stock market indices, the S&P 500 and Nasdaq, during the same period of

study proposed for the German stock market, i.e., the in-sample estimation covers the period from

January 2, 1991 to January 18, 2008, while a second sample is used for backtesting from January

21, 2008 to June 30, 2013.

The aim is to obtain more research evidence and an in-depth understanding of the cluster be-

havior of extreme events during the crisis period in both countries. Table 1 also includes summary

statistics of the S&P 500 and Nasdaq returns. The data exhibit the usual stylized facts of stock

market returns, in particular skewness and excess kurtosis. As expected, both US market indices

reject the null hypothesis of normality.

As for DAX returns, we apply the eight models proposed, and results of the estimation are

summarized in Table 2. In contrast to results obtained for the DAX returns, the S&P 500 and

Nasdaq show a slight preference for the standard Hawkes-POTand ACD-POT models. As a

result of the above, the estimations for both countries could not provide a marked preference for

a model, indicating that the inclusion of inter-exceedancetimes as covariates is relevant for the

models. However, the way in which this information is included or captured in the model (e.g., in

terms of its intensity or duration) depends on the financial asset analyzed.

In order to shed light on the behavior of extreme events during the subprime crisis in the US

market, we include the in-sample and backtesting estimations for the VaR. Tables 4 and 5 display

the results. The in-sample results for the VaR estimates also confirm the Hawkes-POT and ACD-

POT for S&P 500 returns but not for the Nasdaq returns, where according to the number of tests

approved Hawkes-DPOT model seems to be preferred. Observe that the most crucial confidence

level for the rest of the models is the 0.95 quantile, where the hypothesis tests of independence

among the violations are mainly rejected. In line with theseresults, in the models where parameter

β1 was not estimated, the goodness of fit of the GPD for the marks showed the worst results.

Finally, regarding the backtesting analysis performed in both US stock markets, the number of

violations observed for all VaR confidence levels remained within the expected range complying,

at the very least, with the Basel Committee recommendations.
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5. Conclusions

We have illustrated how modern EVT can be used to model tail-related risk measures, such as

VaR, applying it to negative daily log-returns on German and US stock markets during the recent

crisis period. We propose an extension of the classic POT to model cluster behavior through

the SEMPP for the inter-exceedance times and for the exceedance sizes. Maximum likelihood

methods are used to calculate the parameters, where the self-exciting approach can follow eight

different models.

In relation to the results for the DAX index, we observe that Hawkes-DPOT, ACD-DPOT

and the simple ACD-POT display the best performance in-sample. This means that past inter-

exceedance times can influence not only the frequency or intensity of how these extreme events

occur but also the size of exceedances. The way the inter-exceedance times affect the size of ex-

ceedance was modeled through the scale parameter in the GPD by means of covariates. In the

backtest, the results are impressive and almost superior tothe in-sample, essentially due to the

rapid adaption of models using the most recent information.A result that varies with the empir-

ical application is the choice of working with the inter-exceedance times or with the conditional

intensity of their ground processes.

In the case of the US stock market, the results confirm the Hawkes-POT and ACD-POT for

S&P 500 returns but not for the Nasdaq returns, where the Hawkes-DPOT model seems to be

preferred. Regarding the backtesting analysis performed inboth US stock market indices during

the crisis period, for all models the number of violations observed for all VaR confidence levels

remained within the expected range, therefore complying with the Basel Committee recommen-

dations.

Concerning the question whether the inter-exceedance timescan contribute to the measure-

ment accuracy of market risk in financial markets, our main conclusion is that inter-exceedance

times play an important role in the statistical analysis of extreme events. Among the two possible

strategies to incorporate these times, either as covariates to describe the size of the extreme events

or in terms of their intensities, the estimations for both countries did not provide a clear preference

for a specific model. Therefore, the way in which this information is included depends on the

specific financial instrument investigated.

Three directions for future research emerge from the results. Being interested in long-term

behavior rather than in short-term forecasting, the simulation of these models is possible for esti-

mating risk measures with other time horizons. Alternatively, using a combination of these models

to compare conservative and aggressive strategies for choosing between VaR models, as done by

McAleer et al. (2013), may also be a useful risk management strategy. Finally, other flexible forms
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for the self-exciting function could be used incorporatingother characteristics of the series, such

as trends of increasing exceedances or different regimes, such as after shocks.
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Appendix A. Accounting for Threshold Uncertainty

Threshold uncertainty plays one of the most important rolesin the utilization of EVT. The

selection of the threshold level is not unique, and a number of approaches exist to this end (see

Guillou and Hall, 2001; Tancredi et al., 2006; Scarrott and MacDonald, 2012 for a plethora of

approaches). The basic idea of all these approaches is the same — optimize a trade-off between

bias and variance. On one hand, a high threshold level will diminish the size of the sample and the

variance parameter estimates will be high. On the other hand, a low threshold will enlarge the size

of the sample, reducing the variance but inducing bias into parameter estimates, since we could be

modeling the bulk of the sample instead of the tail of the distribution.

In this paper we follow the statistics proposed by Reiss and Thomas (2007) to determine the

threshold level, or equivalently, the number of exceedancesk

argmin
k

f (k) =
1
k

k

∑
i=1

iβ
∣

∣

∣
ξ̂i −median

(

ξ̂1, . . . , ξ̂k

)∣

∣

∣
,

whereξ̂i is a shape parameter estimate for the sample fraction of the extremes above the upper

order statistici, andβ ∈ [0,0.5] is a tuning parameter. This choice is motivated by the structural

form of the SEMPP approach, where the only parameter that is not updated constantly is the shape

parameter, and therefore, it should remain relatively invariant through different threshold levels

and time.

In Figure 4 we display the results of this statistic for all stock market returns analyzed using

the ACD-POT approach. The x-axis shows the number of exceedances from the 0.95 to the 0.90

quantile, while the y-axis exhibits the tuning parameterβ . From top to bottom we observe the

results for the DAX, S&P 500 and Nasdaq returns, respectively. The gray boxes show the interval

where the shape parameter seems to be more stable for the entire spectrum of the tuning parameter.

For the DAX returns this interval corresponds to the 0.925 - 0.915 quantile, while for the S&P

500 and Nasdaq returns these intervals correspond in both cases to 0.92 - 0.91. For ease of the

exposition and to make the results comparable, we define the threshold levels for all the stock

market returns analyzed at the 0.92 quantile.

18



Appendix B. Tables

DAX S&P 500 Nasdaq
N° Observations 5720 5688 5688

Std. dev 1.455 1.170 1.544
Minimum - 9.871 -9.469 -10.168

Mean 0.032 0.028 0.039
Maximum 10.797 10.957 13.254
Kurtosis 4.671 8.691 5.856
Skewness -0.099 -0.238 -0.077

Jarque-Bera test 5209.15 (0) 17976.35 (0) 8144.39 (0)
Phillips-Perron Unit Root Test -17.723 (0.01) -18.221 (0) -17.199 (0)

Table 1: Descriptive statistics of daily log-returns for the DAX, S&P 500 and Nasdaq indices. p-values are in paren-
theses.
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Models µ ψ a b γ δ ξ β0 β1 Log-like AIC BIC
DAX Index

Hawkes-POT 0.029 0.023 0.060 0.367 0.021 0.451 0.132 -1445.2452904.490 2949.061
(0.005) (0.005) (0.010) (0.049) (0.009) (0.050) (0.026)

ACD-POT 0.129 0.034 0.733 1.175 1.592 0.048 0.426 4.171 -1456.1532928.306 2979.244
(0.082) (0.027) (0.059) (0.361) (0.202) (0.043) (0.075) (0.670)

DPOT 0.084 2.491 0.298 -264.554 535.108 554.210
(0.056) (0.478) (0.058)

Hawkes-DPOT 0.015 0.029 0.045 0.121 0.084 2.491 0.298 -1150.9322315.864 2360.435
(0.003) (0.008) (0.011) (0.089) (0.056) (0.478) (0.058)

ACD-DPOT 0.257 0.049 0.626 1.034 1.453 0.084 2.491 0.298 -1151.5092319.018 2369.956
(0.207) (0.049) (0.105) (0.398) (0.206) (0.056) (0.477) (0.058)

DPOT (β1 = 0.75) 0.238 8.593 0.75 -367.1289 740.258 759.356
(0.057) (0.668)

Hawkes-DPOT (β1 = 0.75) 0.015 0.029 0.045 0.121 0.238 8.593 0.75 -1582.7453179.490 3224.061
(0.005) (0.006) (0.009) (0.086) (0.057) (0.669)

ACD-DPOT (β1 = 0.75) 0.068 0.010 0.769 1.620 1.850 0.238 8.593 0.75 -1480.0232976.046 3026.984
(0.103) (0.017) (0.111) (0.470) (0.267) (0.057) (0.668)

S&P 500 Index
Hawkes-POT 0.021 0.018 0.036 0.459 0.001 0.342 0.054 -1304.9952623.990 2668.551

(0.005) (0.004) (0.008) (0.056) (0.001) (0.041) (0.014)
ACD-POT 0.217 0.066 0.707 0.939 1.559 0.075 0.364 1.934 -1306.9272629.854 2680.781

(0.096) (0.028) (0.054) (0.244) (0.152) (0.049) (0.063) (0.487)
DPOT 0.067 1.413 0.263 -203.074 412.148 431.246

(0.049) (0.267) (0.058)
Hawkes-DPOT 0.014 0.014 0.020 0.240 0.067 1.413 0.263 -1315.6992645.398 2689.959

(0.004) (0.004) (0.005) (0.136) (0.049) (0.266) (0.058)
ACD-DPOT 0.212 0.061 0.737 0.940 1.603 0.067 1.413 0.263 -1306.4332628.866 2679.793

(0.096) (0.026) (0.055) (0.240) (0.155) (0.049) (0.267) (0.058)
DPOT (β1 = 0.75) 0.248 5.858 0.75 -232.817 471.634 490.73

(0.0589) (0.461)
Hawkes-DPOT (β1 = 0.75) 0.014 0.014 0.020 0.240 0.248 5.858 0.75 -1345.4422704.884 2749.445

(0.004) (0.004) (0.005) (0.136) (0.059) (0.461)
ACD-DPOT (β1 = 0.75) 0.212 0.061 0.737 0.940 1.603 0.248 5.858 0.75 -1336.1772688.354 2739.281

(0.096) (0.026) (0.055) (0.240) (0.155) (0.059) (0.462)
Nasdaq Index

Hawkes-POT 0.021 0.016 0.032 0.308 0.001 0.442 0.064 -1691.1833396.366 3440.927
(0.004) (0.004) (0.007) (0.043) (0.002) (0.053) (0.017)

ACD-POT 0.065 0.021 0.767 1.689 2.102 0.006 0.522 2.910 -1693.2143402.428 3453.355
(0.046) (0.020) (0.041) (0.544) (0.334) (0.042) (0.080) (0.448)

DPOT 0.012 2.645 0.325 -461.037 928.074 947.172
(0.041) (0.360) (0.048)

Hawkes-DPOT 0.016 0.014 0.021 0.209 0.012 2.647 0.325 -1712.4413438.882 3483.443
(0.004) (0.004) (0.005) (0.076) (0.041) (0.360) (0.048)

ACD-DPOT 0.034 0.008 0.798 2.161 2.413 0.012 2.647 0.325 -1696.3163408.632 3459.559
(0.045) (0.012) (0.052) (0.588) (0.349) (0.041) (0.360) (0.048)

DPOT (β1 = 0.75) 0.185 7.868 0.75 -493.332 992.664 1011.762
(0.046) (0.521)

Hawkes-DPOT (β1 = 0.75) 0.016 0.014 0.021 0.209 0.185 7.868 0.75 -1744.7363503.472 3548.033
(0.004) (0.004) (0.005) (0.076) (0.046) (0.521)

ACD-DPOT (β1 = 0.75) 0.034 0.008 0.798 2.161 2.413 0.185 7.868 0.75 -1728.6113473.222 3524.149
(0.045) (0.012) (0.052) (0.588) (0.349) (0.046) (0.521)

Table 2: Results for the DAX, S&P500 and Nasdaq stock market returns. Standard deviations are shown in parenthe-
ses. Log-like are the results of the maximization of the log-likelihood estimation, while AIC and BIC are the Akaike
information criterion and the Bayesian information criterion, respectively.
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Models GoF POT VaR in-sample VaR backtest

BLW KSW α Viol. LRuc LRind LRcc DQhit DQVaR Viol. LRuc LRind LRcc DQhit DQVaR

Hawkes-POT 0.43 0.06 0.95 204 0.43 0.65 0.66 0.66 0.78 77 0.390.95 0.69 0.93 0.99

0.99 41 0.76 0.01 0.02 0.01 0.01 16 0.60 0.56 0.73 0.54 0.61

0.999 3 0.51 0.95 0.80 0.95 0.56 0 0.09 1.00 0.25 - -

ACD-POT 0.29 0.50 0.95 228 0.37 0.98 0.67 0.98 095 83 0.12 0.950.30 0.95 0.94

0.99 43 1.00 0.08 0.21 0.08 0.00 17 0.43 0.52 0.60 0.52 0.80

0.999 6 0.44 0.90 0.74 0.90 0.75 2 0.63 0.94 0.89 0.94 1.00

DPOT 0.06 0.10 0.95 233 0.22 0.00 0.00 0.00 0.00 68 0.81 0.34 0.62 0.36 0.00

0.99 56 0.06 0.04 0.02 0.04 0.00 9 0.15 0.73 0.34 0.73 0.17

0.999 3 0.51 0.95 0.80 0.95 0.74 0 0.09 1.00 0.25 - -

Hawkes-DPOT 0.06 0.10 0.95 215 0.99 0.93 1.00 0.94 0.00 69 0.91 0.38 0.67 0.39 0.00

0.99 38 0.43 0.05 0.10 0.05 0.14 9 0.15 0.73 0.34 0.73 0.17

0.999 6 0.44 0.90 0.74 0.90 0.17 0 0.09 1.00 0.25 - -

ACD-DPOT 0.06 0.10 0.95 223 0.59 0.31 0.51 0.32 0.00 77 0.39 0.92 0.69 0.93 0.94

0.99 49 0.37 0.13 0.21 0.13 0.19 11 0.40 0.68 0.65 0.68 0.69

0.999 6 0.44 0.90 0.74 0.90 0.09 0 0.09 1.00 0.25 - -

DPOT (β1 = 0.75) 0.00 0.00 0.95 246 0.03 0.00 0.00 0.00 0.00 74 0.62 0.28 0.50 0.30 0.00

0.99 56 0.06 0.04 0.02 0.04 0.01 21 0.08 0.42 0.16 0.43 0.34

0.999 8 0.11 0.86 0.28 0.86 0.06 1 0.72 0.97 0.94 0.97 0.43

Hawkes-DPOT (β1 = 0.75) 0.00 0.00 0.95 246 0.03 0.00 0.00 0.00 0.00 74 0.62 0.28 0.50 0.30 0.00

0.99 56 0.06 0.04 0.02 0.04 0.01 21 0.08 0.42 0.16 0.43 0.34

0.999 8 0.11 0.86 0.28 0.86 0.06 1 0.72 0.97 0.94 0.97 0.43

ACD-DPOT (β1 = 0.75) 0.00 0.00 0.95 187 0.04 0.51 0.11 0.52 0.04 80 0.23 0.81 0.47 0.82 0.61

0.99 55 0.08 0.01 0.00 0.01 0.00 21 0.08 0.32 0.13 0.32 0.54

0.999 14 0.00 0.04 0.00 0.04 0.00 2 0.63 0.94 0.89 0.94 0.24

Table 3: Summary of different statistics for comparing the models using the goodness of fit, and a number of statistical accuracy tests for the VaR in-sample
and in the backtest for the DAX index. Entries in the columns are the significance levels (p-values) of the respective tests, with the exception of theα level
and the number of violations at the VaR (Viol.). The cells with “-” values mean that the test cannot be estimated. Number ofobservations in the in-sample
period is 4304. Number of observations in the backtest period is 1400.
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Models GoF POT VaR in-sample VaR backtest

BLW KSW α Viol. LRuc LRind LRcc DQhit DQVaR Viol. LRuc LRind LRcc DQhit DQVaR

Hawkes-POT 0.86 0.39 0.95 194 0.14 0.08 0.07 0.09 0.21 62 0.440.61 0.65 0.62 0.82

0.99 37 0.35 0.42 0.47 0.42 0.34 13 0.86 0.63 0.88 0.63 0.07

0.999 6 0.44 0.90 0.73 0.90 0.25 0 0.10 1 0.26 - -

ACD-POT 0.73 0.51 0.95 213 0.90 0.10 0.25 0.11 0.25 67 0.76 0.44 0.71 0.45 0.72

0.99 40 0.65 0.39 0.62 0.39 0.24 17 0.42 0.52 0.58 0.52 0.8

0.999 8 0.11 0.87 0.28 0.86 0.64 2 0.63 0.94 0.89 0.94 1

DPOT 0.74 0.16 0.95 230 0.29 0 0 0 0 73 0.67 0.28 0.51 0.29 0

0.99 45 0.76 0.09 0.23 0.09 0 5 0.01 0.85 0.02 0.85 0.01

0.999 6 0.44 0.90 0.73 0.90 0.64 0 0.10 1 0.25 - -

Hawkes-DPOT 0.74 0.16 0.95 193 0.12 0.02 0.02 0.02 0 71 0.85 0.23 0.47 0.24 0

0.99 37 0.35 0.42 0.47 0.43 0.73 4 0 0.88 0.01 0.88 0.05

0.999 8 0.11 0.86 0.28 0.86 0.99 0 0.10 1 0.25 - -

ACD-DPOT 0.74 0.16 0.95 202 0.36 0.02 0.04 0.02 0.01 59 0.19 0.73 0.39 0.74 0.49

0.99 42 0.88 0.36 0.65 0.36 0.35 14 0.98 0.59 0.87 0.6 0.74

0.999 8 0.11 0.86 0.28 0.86 0.92 0 0.10 1 0.25 - -

DPOT (β1 = 0.75) 0.01 0 0.95 243 0.05 0 0 0 0 72 0.76 0.25 0.49 0.26 0

0.99 45 0.76 0.50 0.76 0.50 0.77 9 0.16 0.73 0.35 0.73 0.65

0.999 8 0.11 0.86 0.28 0.86 0.94 0 0.10 1 0.25 - -

Hawkes-DPOT (β1 = 0.75) 0.01 0 0.95 175 0 0.29 0.01 0.30 0.05 72 0.76 0.25 0.49 0.26 0

0.99 60 0.01 0.06 0.01 0.06 0.02 9 0.16 0.73 0.35 0.73 0.65

0.999 11 0.01 0.81 0.03 0.81 0.02 0 0.10 1 0.25 - -

ACD-DPOT (β1 = 0.75) 0.01 0 0.95 171 0 0.23 0 0.24 0.29 55 0.06 0.9 0.18 0.9 0.48

0.99 64 0 0.34 0.01 0.34 0.01 15 0.77 0.57 0.81 0.57 0.75

0.999 13 0 0.78 0 0.78 0.13 2 0.63 0.94 0.89 0.94 0.77

Table 4: Summary of different statistics for comparing the models using the goodness of fit, and a number of statistical accuracy tests for the VaR in-sample
and in the backtest for the S&P 500 index. Entries in the columns are the significance levels (p-values) of the respective tests, with the exception of the
α level and the number of violations at the VaR (Viol.). The cells with “-” values mean that the test cannot be estimated. Number of observations in the
in-sample period is 4298. Number of observations in the backtest period is 1390.
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Models GoF POT VaR in-sample VaR backtest

BLW KSW α Viol. LRuc LRind LRcc DQhit DQVaR Viol. LRuc LRind LRcc DQhit DQVaR

Hawkes-POT 0.89 0.12 0.95 195 0.18 0.17 0.16 0.18 0.18 69 0.390.67 0.63 0.67 0.88

0.99 40 0.67 0.01 0.02 0.01 0.02 10 0.47 0.07 0.14 0.07 0.17

0.999 7 0.23 0.88 0.48 0.88 0.65 0 0.11 1 0.29 - -

ACD-POT 0.03 0.60 0.95 186 0.04 0.02 0.01 0.02 0.03 83 0.11 0.64 0.24 0.65 0.09

0.99 42 0.88 0.07 0.19 0.07 0.19 12 0.6 0.09 0.21 0.09 0.12

0.999 4 0.88 0.93 0.99 0.93 0.30 4 0.07 0.88 0.20 0.88 0.97

DPOT 0.08 0.42 0.95 222 0.62 0 0 0 0 70 0.95 0.8 0.96 0.80 0

0.99 55 0.08 0.01 0 0.01 0 16 0.58 0.18 0.34 0.18 0.01

0.999 6 0.44 0.90 0.73 0.90 0.35 3 0.24 0.91 0.49 0.91 0.67

Hawkes-DPOT 0.08 0.42 0.95 190 0.08 0.12 0.06 0.13 0 63 0.42 0.93 0.72 0.93 0

0.99 41 0.76 0.06 0.17 0.07 0.01 15 0.77 0.15 0.34 0.15 0.01

0.999 5 0.74 0.91 0.94 0.91 0.78 3 0.24 0.91 0.49 0.91 0.67

ACD-DPOT 0.08 0.42 0.95 194 0.14 0 0 0 0 76 0.43 0.93 0.73 0.94 0.97

0.99 52 0.18 0.03 0.04 0.03 0.05 15 0.77 0.15 0.34 0.15 0.36

0.999 6 0.44 0.90 0.73 0.90 0.97 2 0.63 0.94 0.89 0.94 0.99

DPOT (β1 = 0.75) 0.01 0.02 0.95 235 0.16 0 0 0 0 79 0.25 0.80 0.50 0.81 0

0.99 64 0 0.02 0 0.02 0 17 0.42 0.20 0.32 0.20 0.08

0.999 9 0.05 0.85 0.14 0.85 0.92 3 0.24 0.91 0.49 0.91 0.97

Hawkes-DPOT (β1 = 0.75) 0.01 0.02 0.95 174 0 0.07 0 0.08 0.01 64 0.49 0.54 0.66 0.55 0.25

0.99 53 0.14 0 0.01 0 0.02 16 0.58 0.18 0.34 0.18 0.40

0.999 10 0.02 0.83 0.06 0.83 0.29 3 0.24 0.91 0.49 0.91 0.41

ACD-DPOT (β1 = 0.75) 0.01 0.02 0.95 176 0.01 0.01 0 0.01 0 63 0.42 0.50 0.57 0.51 0.15

0.99 56 0.06 0.04 0.02 0.04 0.13 16 0.58 0.18 0.34 0.18 0.38

0.999 10 0.02 0.83 0.06 0.83 0.75 3 0.24 0.91 0.49 0.91 0.96

Table 5: Summary of different statistics for comparing the models using the goodness of fit, and a number of statistical accuracy tests for the VaR in-sample
and in the backtest for the Nasdaq index. Entries in the columns are the significance levels (p-values) of the respective tests, with the exception of theα level
and the number of violations at the VaR (Viol.). The cells with “-” values mean that the test cannot be estimated. Number ofobservations in the in-sample
period is 4298. Number of observations in the backtest period is 1390.
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Appendix C. Figures
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Figure 1: From top to bottom and from left to right, we observethe DAX index from January 2, 1991 to January
18, 2008, the most important losses for the returns of this index, the autocorrelation function for the inter-exceedance
times of these losses, and a scatter plot of marks and inter-exceedance times preceding the last three events (i.e.,
xi,3 = ti − ti−3).
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Figure 2: VaR estimation in-sample at the 0.99 confidence level for the eight models fitted to the DAX returns. The
black lines are the VaR estimates, while× are the violations. From top to bottom and from left to right,the models
are: Hawkes-POT, ACD-POT, DPOT (β1 = 0.75), DPOT, Hawkes-DPOT (β1 = 0.75), ACD-DPOT (β1 = 0.75),
Hawkes-DPOT and ACD-DPOT.
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Figure 3: VaR estimation for the backtesting at the 0.99 confidence level for the eight models fitted to the DAX
returns. The black lines are the VaR estimates, while× are the violations. From top to bottom and from left to
right, the models are: Hawkes-POT, ACD-POT, DPOT (β1 = 0.75), DPOT, Hawkes-DPOT (β1 = 0.75), ACD-DPOT
(β1 = 0.75), Hawkes-DPOT and ACD-DPOT.
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Figure 4: Results of the statistics proposed by Reiss and Thomas (2007) to determine the threshold level for the returns
analyzed. From top to bottom the results for the DAX, S&P 500 and Nasdaq returns, respectively. The gray boxes
show the interval where the shape parameter seems to be more stable for the entire spectrum of the tuning parameter.
For the DAX returns this interval corresponds to the 0.925 - 0.915 quantile, while for the S&P 500 and Nasdaq returns
these intervals correspond in both cases to the 0.92 - 0.91 quantile.
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