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Abstract

Given the growing need for managing financial risk and themeglobal crisis, risk prediction
is a crucial issue in banking and finance. In this paper, wevdlh@wv recent advances in the
statistical analysis of extreme events can provide solithogological fundamentals for modeling
extreme events. Our approach uses self-exciting market poocesses for estimating the tail
of loss distributions. The main result is that the time betwextreme events plays an important
role in the statistical analysis of these events and codretbre be useful to forecast the size and
intensity of future extreme events in financial markets. Wstrate this point by measuring the
impact of the subprime and global financial crisis on the Garmstock market in extenso, and
briefly as a benchmark in the US stock market. With the helpuoffitted models, we backtest
the Value at Risk at various quantiles to assess the likedinédifferent extreme movements on
the DAX, S&P 500 and Nasdaq stock market indices during tihgscr The results show that
the proposed models provide accurate risk measures aongdalihe Basel Committee and make
better use of the available information.

JEL classification: C01; C58; C22; E44

Keywords: Extreme value theory, Value at Risk, Subprime crisis, Gerstack market.

1. Introduction

While the majority of European countries are experiencinglat @risis, Germany has been
enjoying the biggest economic boom with an extraordinaagdrsurplus sice the global crisis of
2008. Although Germany was initially hit hard by the globalaincial crisis, its exports helped
the country’s economy recover once the worst was over. Thadoker Aktien Index, or DAX,
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is Germany’s primary blue chip stock index and is also on s®wo complete its best year since
2003, reaching a new peak of 8530.89 on May 20, 2013, surgagsiprevious high mark seen
on July 13, 2007.

Germany is the largest individual European economy; tthesIXAX is considered to be the
most important index in Europe, which in turn makes it higimffuential throughout the finan-
cial world. However, every financial crisis brings extrernedes to the world stock market, and
attempts are made to minimize these as much as possible.n$tance, one of these extreme
losses occurred on June 4, 2012, when the DAX index droppledvi&)00 points following the
announcements of Spain and lItaly’s troubled banking secfbhis created extreme price move-
ments not only in the stocks and indices of these countriealba to those across the European
Union. A black year for the DAX stock market index was 2008thafive of the most extreme
losses in its 25-year history. The DAX index lost more than @fceach of those days, as for
example, a drop of 523.98 points (7.16%) on January 21, 208&:h was attributable to steep
losses in the financial industry of US$1.45 billion of invasnts by the German Bank WestLB.

Several authors (Chavez-Demoulin and McGill, 2012; SantosAlves, 2012; Allen et al.,
2013; McAleer et al., 2013; de Jesus et al., 2013; Hammoutlah,2013; Santos et al., 2013)
have argued that extreme value theory (EVT) allows us toi@Hpltake into account the ex-
treme events contained in the tail distribution of lossdss provides three main advantages over
classical methods, such as conditional models on volatilistorical simulations or the Gaussian
distribution approach. First, as it is a parametric methveel can extrapolate the behavior of the
tails to extreme levels, e.g., Value at Risk (VaR) estimati@econd, EVT focuses only on mod-
eling the tail behavior of a loss distribution using onlyrexne values rather than the whole data
set. Third, as we do not assume a particular model for retweagpropose a data-based approach
to fit the distribution tails.

Unfortunately, EVT presumes independent identicallyrihsted (i.i.d) observations, with
stylized facts of stock market returns, such as clustergeémes and serial dependence, whereas
the three worst daily losses in the DAX during October 2008 Wasses greater than 7% typically
violated this assumption. These problems are often adetldgsthe application of a declustering
method, and then the standard model is fitted to the clusteinmaeonly. However, the drawback
of these approaches is the information loss contained sBetbkisters (see Smith and Weissman,
1994; Laurini and Tawn, 2003; de Jesus et al., 2013). Andathiernative is to apply a general-
ized autoregressive conditional heteroskedasticity (GAR@tstochastic volatility model to the
returns and then use EVT in the residuals (see, for exampdlgil and Frey, 2000; Allen et al.,
2013; Santos et al., 2013).



In response to the stylized facts of extreme events in fighntarkets, a new line of research
has emerged that incorporates the clustering behavioresttbxtreme events into the model. In
particular, Chavez-Demoulin et al. (2005) propose a saiftiexy version of the peaks over thresh-
old (POT) model, the so-called Hawkes-POT model, while erarand Schipp (2013) introduce
another alternative approach, the autoregressive condiltintensity POT (ACD-POT) model.
Another similar idea is to include the inter-exceedances$irtthe time between extreme events)
as covariates in the POT approach, the duration-POT (DP@drpach, introduced by Santos and
Alves (2012). The main advantage of these models is thatuiséecing behavior of extreme events
is taken into account, making better use of the informatiwargby the data to drive improvement
in the estimation and forecast of different risk measures.

The contribution of this paper is twofold. First, we intr@dunew models whose main feature
is to directly model extreme events above a high threshagipusly defined, regardless of the
cluster behavior demonstrated by extreme events in finmaekets. Specifically, we raise the
question whether the inter-exceedance times can corgribtihe measurement accuracy of market
risk in financial markets. In particular, whether the inteceedance times should be included as
covariates to describe the size of the extreme events (DP@Wkes-DPOT and ACD-DPOT
model) or whether this should be included in terms of theiensities (Hawkes-POT and ACD-
PQOT). To the best of our knowledge, no prior study has andlyhés issue to provide better
measures of market risk. Second, Germany is one of the mpstriant and the largest economies
in the euro zone; therefore, we analyze the returns of the D#Méx during the recent turmoil
periods using the proposed models and compare these reshltsvo leading US stock market
indices, S&P 500 and Nasdagq, during the same time period.

The main conclusion is that while time observations play mpdrtant role in irregularly
spaced data, the same occurs with inter-exceedance tinths statistical analysis of extreme
events for financial markets. Roughly speaking, while Badekr(Basel Committee on Banking
Supervision, 2006) count the number of VaR exceptions, thpgsed self-exciting marked point
process (SEMPP) approach takes into account the time wieeextheme events occur. In this
way, the models capture the cluster behavior of these ewentscting for possible inadequacy
of risk models due to financial fluctuations, which by nature extremely complicated during a
crisis period. Furthermore, the SEMPP approach meets tlegieable features that enhance the
accuracy of the risk measures and raise the standard of askkgement: the expected frequency
of violations is in line with the selected confidence levélsence of dependence among VaR vio-
lations, and a quick reaction to changes in volatilitiesmyithe crisis period, avoiding violation
clustering. Actually, these aspects are fully met by ourhoéological proposal and therefore



provide strong support for the validity of the empirical bysés.

This paper is organized as follows. Section 2 introducedrdmaework for extreme events
from the point of view of SEMPP. Section 3 presents the emglinalysis of the DAX index.
This section includes a preliminary analysis of the stylif&cts associated with extreme events
in this market and the results of modeling and backtestiegéturns of this stock market index
during the subprime crisis. Section 4 includes a short @mabf US stock market indices during
the same period with the aim of getting more research evaland an in-depth understanding of
the cluster behavior of extreme events during the crisi;mden both countries. Conclusions and
discussions are presented in Section 5.

2. Self-exciting marked point processesin EVT

In this section, we summarize the results for the POT appré&aen the point of view of the
SEMPP theory, which underlies our modeling. General liteeaon the subject of EVT include
Chavez-Demoulin et al. (2005); Herrera and Schipp (2009)y€x®emoulin and McGill (2012)
and Herrera and Schipp (2013). From a practical point of yvgwpose that we have observed
the returns of a known stock market whose behavior is notssecty i.i.d. Now, imagine that
we have only recorded the information of the most extrematsyehat is, all the time events
whose magnitudeg have exceeded a high threshaoldoreviously defined. Thus, we obtain a set
of events{(t;,i) };~1, Which are defined in the spac, 1) x [u,). Under this point of view,
the magnitudey; correspond to the marks, which carry information about t®iorence timeg
and whose internal history is given by := {(t;,y;) : 1 =1,...,N(t) — 1} Thus, this set of events
defines a marked point proces$t) := y;~1 <ty Whose conditional intensity is defined by

. 1
Aty| )= lim —=P(N([tt+A0) xy) > 0] )

or alternatively
ALY [ 7h) = Ag(t| A)9(y | H4)1), (2.1)

whereAq (t | %) is a conditional intensity that describes only the behawfdahe arrival times

of these extreme events, named the ground process, @hiles#,t) corresponds to the prob-

ability density function of the exceedances, which in ousecé& a generalized Pareto density
function according to the Pickands—Balkema—de Haan the(geePickands Ill, 1975; Balkema
and De Haan, 1974):

1As a convention in this paper, a negative value is treatepasitive number and extreme events take place when
losses are part of the right tail of the distribution.
’Note that we defined the time interval between 0 and 1 for ebseposition.
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wheref (y | #4,t) is a scale parameter conditional on the history of the pardé is the shape
paramete?. We consider only the scale parameter to be conditional secdifferent empirical
analyses have shown that it is reasonable to allow the shagenpter to remain constant (see
Chavez-Demoulin et al., 2005; Chavez-Demoulin and McGilll2(errera, 2013; Santos and
Alves, 2012; Santos et al., 2013). Finally, since the comait intensity can also depend on the
history of the process#, these types of models are called self-excited (see Dakkyare-Jones,
2003 for a more formal introduction to SEMPP).

Observe that for SEMPP models, the estimation of the VaR eattirectly obtained. Indeed,
the VaR at thex confidence level is the smallest valygzfor which the probability that the next
observation period foy; .1 will exceedzis not more thamr using the information observed up to
timet, which is the solution t& (Y1 > z4* | #4) = 1— a. This probability can be estimated as
follows:

(2.2)

P (V1> 2 [ K) = PMur>ul B)P (M —u> 25t Vg1 > u, %)
= [1-E{N([t,t+1)=0]4)}|G(y| #4.t)
t+1
~ {i-en(- [ a0 1) bewl A
t
At | 4) x Gy | A1),

Q

whereG (y | #4,t) corresponds to the survival function of the cumulativeribgtion function of
(2.2), the generalized Pareto distribution (GPD) functibhnus, to solve this equation for an event
higher tharu, the VaR is defined by

¢

The last equation implies that the VaR is only defined for owdets if A¢(t | 74) > 1— a.

Thus, the time when these extreme events occur as well ag/ttzanic behavior of these inter-
exceedances can play a role in describing the future behafisew extreme events. The log-
likelihood L of the events{(ti,yi)};~, in a set[0, T] x [u,«) is given in terms of the conditional

3This density function is well-defined far< y < yg, whereyr is the right endpoint with valugg =« if & >0
andye = B (y| #4.t) /€ if £ <0.
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intensity for the ground process and density for the marKelbsvs:

N(T) T N(T)
L = Z logAg (ti |,%’i)—/0 Ag(s| 76)ds+ Zi logg(yi | 74,t). (2.4)
i= ic

Observe that in the case of independence between the grooceks and the density of the marks,
the log-likelihood could be split and estimated separatélythermore, in the case that our obser-
vations were i.i.d random variables, the number of excessimaver this thresholadshould follow

a Poisson process and, therefore, the intensity of the grprotess\g (t | %) would be constant,
while the marks are modeled by an unconditional GPD (for aitbet explanation see Herrera and
Schipp, 2013).

The particular feature of the SEMPP approach is the reptaisem of the conditional intensity
for the ground process as a sum of contributions from alliptes/time events. In this paper,
we consider two SEMPP models, the Hawkes-POT model intediut Chavez-Demoulin et al.
(2005) and the ACD-POT model proposed by Herrera and Schipp (2018qth&r interesting
alternative, which we also wish to consider, is the so-ddll®OT model introduced in Santos and
Alves (2012). The DPOT is not directly a SEMPP but a one-dsiaral point process with inter-
exceedance time covariates, which introduce an autorsgedasfluence on the scale parameter of
the marks.

2.1. The Hawkes-POT model

The Hawkes-POT model is obtained by parameterizing thengitte of the ground process
Ag(t | 7%) and the scale paramet@r(y | 74t) by means of a Hawkes process (Hawkes, 1971) as
follows:

Ag(t| ) = k+@ % exp{dyi—y(t—t)} (2.5)
i<t

and

Bly| #4,1) = Botn Y exp{dyi—y(t—t)},
i<t
respectively. Under this parametrization all parameterpasitive k andfy represent the baseline
rate of events, which in most applications is assumed to bstaat in time, whilep andn are
impact parameters related to the new extreme events. Inwtres, an extreme event increases

4See also Herrera and Schipp, 2009; Chavez-Demoulin andIM2G12 for new applications.
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the chance of attaining other extreme events immediatédyvedrd, then decreases exponentially
to the baseline rate of events, displaying a monotone deiageaehavior.

2.2. The ACD-POT model

The second specification is the ACD-POT approach where thditcmmal intensity of the
ground process is driven by a self-excited function thatpdated at each extreme event of the
process. These types of specifications were proposed bgideand Schipp (2013) in the context
of EVT. This type of model is a mixture between the classic@l’'Pmodel and the autoregressive
conditional duration (ACD) model (see Engle and Russell, 199%e conditional intensity of
the ground point process of exceedances for this approgméndse only on a fixed number of
the most recent inter-exceedance times: tj —tj_; and the expected conditional duratign=
E[X | Xi_1,...,x1] of allinformation up to and including timig_1:

XNt = UnpEnw

whereg; are i.i.d random variables. In particular, we consider atagmic ACD (Log-ACD)
model, introduced by Bauwens and Giot (2000) in order to preyeebecoming negative, in which
the autoregression bears on the logarithm of the conditexected duration

Wn(r) = exp{w+alogxy)_1+ blog Y1} -

The ground procesky(t | 74; 0) for this type of model can be expressed as a multiplicatifecef
between the baseline hazard functidg(-) of the random variable and a shift given by the
expected duration

Une ) Wng
In this paper, we propose the Burr distribution (see Grammég\aurer, 2000) for the random
variablee, which displays a flexible non-monotonic hazard functidcrtg a bathtub-shaped or
inverted U-shaped form. The density function is defined by

At | A4) = Ao (t_t““)> L (2.6)

Akt
<1+ yz)\tk) y2+1

f(x|Aky) =

2(1+1) 2
LetA =1andg = ¥(1+]£)rr((;2+3 , where 0< y~2 < k. Then, the implied conditional intensity

function for the ground process is given by




kg (t—tu) < *
1+ Vz‘ﬂx_n(li) (t—tne)
In addition, for the scale paramet@(y | .74,t), we consider a linear parametrization such that it

depends on the history of the process, as in the Hawkes-P@€&Imo

Aglt | A7) = (2.7)

B(y| A1) = Bo+ Birg(t | 7).

This type of parametrization has shown the best results ipirezal studies (for example, see
Herrera and Schipp, 2013; Herrera, 2013).

2.3. The Hawkes-DPOT and ACD-DPOT models

For the above models, we observe that one of the main ingresdie the scale modeling in
the GPD. The economic interpretation for those specifinatis that in a period of turmoil the
scale parameter in the density of the marks is influenced dyeimporal conditional intensity of
the ground process; therefore, the estimated conditioR& ean follows the path of the ground
process. Based on a similar idea, Santos and Alves (2012) proposeathering the expected
mean and variance of the marks by means of covariates oferteredance times. In particular,
they observed that short inter-exceedance times displeghaihmean and variance than long inter-
exceedance times, which in turn suggest an inverse retdtiptetween the size of the marks and
inter-exceedance times. For a general overview of EVT aholyithe use of explanatory variables,
see Coles (2001).

Once again, defing =t; —t;_1 as the most recent inter-exceedance time between two extrem
events, withx(t) =t —t; being the backward recurrence time M) the counting process of
exceedances at Notice thatx(tj)) =t —ti_1 = X;. Alternatively, the authors propose using the
information of the lasv inter-exceedance timésthat is, x(t), =t —tn)—v, @s covariates of the
scale parameter as follows:

Po
Byl A1) P
wherefp > 0 andp; > 0. Observe that they only model the marks while for the gropmotess
they assume that this follows a Poisson process of exceeslavith a constant rate given by the
expected number of extreme evelig divided by the size of the samph, Ag = Ny/N. We

propose two other alternatives based on the DPOT modeléd&#D of the marks but include the

®Indeed, the mean of the conditional GPD is given (+ N Ty €xp{dyi — y(t—t)}) /(1 — &) for the
Hawkes-POT model aiid + B1Ag(t | 7%)/(1— &) for the ACD-POT model.
60bserve thax(t)y = x(t) + XN@)—1F X —ve1 = t—tng)—v, and thereforex(ti)y =t —tiv =Xy
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dynamic behavior of the Hawkes and ACD approaches to modéhttieexceedance times in the
ground process. The conditional intensity for these twera#tives is given by

B -1/é-1

X(t —u

Ayl ) =agtt | ) PO (1 M) @)
Po Bo

whereAq (t | %) is replaced here by (2.5) or (2.6) depending on whether we tastimate the

Hawkes-DPOT or the ACD-DPOT, respectivély.

3. Empirical analysisof the DAX index

3.1. Data description

Our data set consists of daily returns definedrpy- —100log pt/pi—1), wherep; denotes
the value of the DAX index at dalyover a sample period from January 2, 1991 to January 18,
2008; on January 21, 2008, global stock markets sufferadliiggest falls since September 11,
2001. Observe that we concentrate only on the losses. A desample is used for backtesting
the estimation of the different risk measures in the DAX mttem January 21, 2008 to June 30,
2013. We update daily the new information that becomes aivailfor the parameter estimates
previously obtained. Thus, we dynamically adjust the m&dehich allows us to improve as
accurately as possible the estimation of the risk measures.

An important point is the choice of the threshold, which irepla balance between bias and
variance. The threshold must be set high enough so that@xcees have a GPD. In this paper
we choose to work with 8% of the maxima of the sample. Thissto&l selection is based on
the stability of the shape parameter, which influences three risk measures estimates (see
Chavez-Demoulin and McGill, 2012; Herrera, 2013 for othégralatives). A detailed description
of the methodology used can be found in Appendix A.

In order to better understand the empirical applicatiors worth looking briefly at the basic
characteristics of the extreme events that we want to aealyzTable 1 in the Appendix, we find
some descriptive statistics of the daily returns for the DAdex. The mean return is close to zero
and it differs considerably in terms of standard deviatiskewness and kurtosis of a normally
distributed random variable. In particular, the returnshaf DAX index exhibit a high kurtosis.
The assumption of normally distributed returns is strongigcted through the Jarque-Bera test.
Other assumptions, such as the null hypothesis that theneeseries are i.i.d random variables as
well as the returns have a unit root, are strongly rejected.

’Observe that for ease of exposition we assume&ha. The case wher& = 0 can be obtained similarly.
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<Insert Figure 1 about here>

Relating stylized facts of the most extreme events, Figuresplalys some of the most im-
portant events for the DAX index during the in-sample perif@d example, the Asian financial
crisis in 1997, the collapse of the Long-Term Capital Manage@n(LTCM) hedge fund in 1998,
the dot.com Bubble in 2000 and the September 11, 2001 temamkat among others. On the
right side of the top panel, we observe in detail the mosteexér losses for this index (8% of
the most important losses), whose clusters are evidenhdrthe year 2000. In particular, the
left side of the bottom panel in Figure 1 shows strong evideoican autocorrelation between
the inter-exceedance times for the data analyzed. Anotheresting stylized fact described by
Santos and Alves (2012) is the apparent relationship bettesesize of the marks and the inverse
of past inter-exceedance times. In our case, we found agspositive correlation between them,
in particular, this relationship (Pearson correlation2).das stronger when we considered the
whole inter-exceedance times preceding the last thregsves =t —t_3. Summarizing, styl-
ized facts, such as clusters of extremes, dependence amengxceedance times and the size of
marks, support the use of the proposed models.

3.2. Evaluation framework

We compare the models using the goodness of fit and a numbiatistisal accuracy tests for
the VaR in-sample and in the backtest.
For the goodness of fit we employ

» W-statistic (Smith, 2003). This test assesses the suatessdeling the temporal behavior
of the exceedances. The W-statistic is defined by

W= (“’%(yyr;l% t>>'

This statistic states that if the GPD parameter model isectrithe residuals are approxi-
mately independent unit exponential variables. For thasoe, we test if the residuals are
approximately independent by means of a Box-Ljung tB&{y() and if they are unit expo-
nential variables through a Kolmogorov-Smirnov td&8g).

For the statistical accuracy tests for the VaR we consider

» Unconditional coverage testR ). The idea is to test whether the fraction of violations
obtained for a particular risk measure is significantlyetént from the theoretical one. A
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violation I 1 of the VaR for the day + 1 is defined as occurring when the retuyn; is
higher than the VaR as follows:

1 ifreg>VaRt

ley1=
0 ifryq <VaR ™t

Test of independence between violations of the VAR{g). Under the null hypothesis, a
violation today has no influence on the probability of a Vilma tomorrow. Christoffersen
(1998) suggests this test of independence by modeling thdauof violations as a binary
first-order Markov chain.

Conditional coverage testR.c). This is a combination of the unconditional coverage test
and the test of independence in order to test correct conditicoverage. For more details
on the estimation of theR,¢, LRng andLR tests, we refer to Christoffersen (1998).

Dynamic Quantile testQni andDQvaRr). Engle and Manganelli (2004) propose examin-
ing whether the Hits on the VaRit; = I; — a) for the present period are uncorrelated with
the above Hits and/or VaR estimates by means of a logit nfodelour approach for the
first case, denoted by tH2Qy;; the regressor vector contains only a lagged violation of the
VaR

Hit; 1 = a+ bHit; + &,

while the second tesQvar, Uses the contemporaneous VaR estimate
Hit;, 1 = a+bHit; + lﬁ)gVE';lI'-\,’Zr +&.

Under the null hypothesi$jy = b = 0, the regressors should have no explanatory power.

3.3. Empirical results in-sample for the DAX index

Having investigated the characteristics of the financiaésewe can now turn to a comparative

analysis of the SEMPP proposed in the previous sections. sfilmate all models proposed in
Section 2, optimizing the log-likelihood function (2.2).

We estimate eight models: one model each for Hawkes-POT &iatROT and two models

for the DPOT, Hawkes-DPOT and ACD-DPOT approaches. Accgriirsantos and Alves (2012)

80Observe that the sequenidd; is the de-meaned process @rassociated witft.
9We use the optimx package in R (Nash and Varadhan, 2011)hwhimvs for different strategies of optimization
of the maximum likelihood.
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and Santos et al. (2013), better results are obtained wheheeese the parametgy in the interval
between 0.7 and 0.8 instead of estimatfiigoy means of the log-likelihood function. For this
reason, we consider two models for DPOT, Hawkes-DPOT and BPDT, one with a fixeqB;
and the other estimated by maximizing the log-likelihoatthie empirical application, @ = 0.75
exhibits better results according to thB test.

Results of the estimation are summarized in Table 2. Obskatdhie models are not directly
comparable in terms of goodness of fit, especially the DPQiragehes. For this reason we
compare them in terms of the performance in the estimatidghefaR and the goodness of fit
for the GPD. However, we include the AIC and BIC statisticsdompleteness. Only the ACD-
POT (DPOT) and Hawkes-POT(DPQOT) are directly comparablecofding to these results, the
Hawkes-DPOT and the ACD-DPOT model exhibit the best fit.

<Insert Figure 2 about here>

Relating the statistical accuracy tests for the VaR, Figuresglays the results in-sample for
the estimates of VaR at the 0.99 confidence level. At firstagafigure 2 indicates that the VaR
estimates are very similar while the violations are not tbat the crisis period, which could
indicate some kind of bias in the model. Table 3 reports thaltefor all tests at three confidence
levels for the VaR: 0.95, 0.99 and 0.999. Entries in columegla significance levels (p-values)
of the respective tests, with the exception of lewednd the number of violations at the VaR. We
observe that the DPOT, Hawkes-DPOT and ACD-DPOT, estimaitthdoarametef3; not constant,
seem to be less variable through time in comparison with ¢se af the models. However, the
results of accuracy of the VaR estimates in Table 3 show tigigiad two of these models, Hawkes-
DPOT and ACD-DPOQT, display the best performance with a tdtaloof 15 tests approved. The
only model with similar performance is the standard ACD-PldTelation to the goodness of fit
of the GPD for the marks, the models where param@tavas not estimated displayed a poor fit
according to the W-statistidBLy andKSy), in constrast to the results obtained by Santos and
Alves (2012).

Summarizing, models with a ground process whose condltiotensity is characterized by
a Hawkes or ACD and whose marks follow a DPOT approach displeypéest performance in-
sample. Nevertheless, more important is the accuracy didbktests produced by the proposed
risk models. A systematic evaluation of the accuracy of thedasts generated by these models is
given in the next subsection.
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3.4. Backtesting the models

To evaluate the performance of the VaR models, backtestasyaarried out with the daily
returns from January 21, 2008 to June 30, 2013. On each dagdbe backtesting, we fitted the
eight models introduced above, then we reestimated the ®#Rfdr each return series according
to (2.3) . Table 2 also reports the results on the VaR backteskercise.

An important year for the backtest period is 2008, which emgasses five of the worst trading
days since the beginning of the DAX index in 1989. The first enéanuary 21 with -7.164%.
The next three are October 6, 10 and 15, with a change in gageof -7.073, -7.012 and -6.493,
respectively. The last one was October 15 with a percentgghah-6.838. Moreover, 36 extreme
events of the whole backtesting sample are found in this year

Figure 3 displays the results for the backtesting for a ValR eiconfidence level 0.99. Overall,
the performance of the models for at least the unconditionaérage seem to fit satisfactorily,
especially for 2008, the year of the subprime crisis. Indéseinumber of violations for this year
was never higher than three, with one, of course, in Octob@82

<Insert Figure 3 about here>

Deeper analysis of Table 2 shows that all models, even witkeal fparametef3;, approve
most tests for VaR accuracy. The most important differesaelated to the results obtained for
the dynamic quantile te®Qyar for the confidence level 0.95. Notice that for all models whos
ground process were kept constant or had a Hawkes’ type, wvelfeome kind of autocorrelation
between the violation and the most recent estimate for tike Maowever, according to the “traffic
light” approach, the SEMPP models are all classified in teegrzone (see Basel Committee on
Banking Supervision, 2006).

4. Contrasting German and US stock markets

In view of the recent financial crisis, it seems to be cleat thi@rnational linkages among
financial institutions may explain contagion transmisstooss country and the role of the US
market as a leader among the world’s stock markets (Madiland Bird, 2007; Lee and Chang,
2013; Dimpfl and Peter, 2014; Yamamoto, 2014). Similarly;r@eny is one of the most important
and the largest economies in the euro zone.

Concerning linkages between the German and US stock matketise best of our knowl-
edge there are few studies assessing the relative impertancontagion and interdependence
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between them. Baur and Jung (2006) investigate spillovedscarrelations around the opening
of both stock markets. Flad and Jung (2008) using high-fraqu data identify a common trend
shared by German and US stock markets and show that the U®tnmatke driving force in the
transatlantic system of stock indices. Bonfiglioli and Fay&005) found evidence of short-term
interdependence and contagion between both markets andtBhbthe effect of fluctuations of
the US stock market on the German stock market exhibits dinear behavior.

In this section we contrast our results obtained for the DAMex returns with two of the
most important US stock market indices, the S&P 500 and Npsdiaring the same period of
study proposed for the German stock market, i.e., the irpaastimation covers the period from
January 2, 1991 to January 18, 2008, while a second sammedsfar backtesting from January
21, 2008 to June 30, 2013.

The aim is to obtain more research evidence and an in-dekrstanding of the cluster be-
havior of extreme events during the crisis period in bothntoes. Table 1 also includes summary
statistics of the S&P 500 and Nasdaq returns. The data éxhiiusual stylized facts of stock
market returns, in particular skewness and excess kurtdsiexpected, both US market indices
reject the null hypothesis of normality.

As for DAX returns, we apply the eight models proposed, amailts of the estimation are
summarized in Table 2. In contrast to results obtained ferQAX returns, the S&P 500 and
Nasdaq show a slight preference for the standard Hawkes#&MdTACD-POT models. As a
result of the above, the estimations for both countriesacook provide a marked preference for
a model, indicating that the inclusion of inter-exceedatiites as covariates is relevant for the
models. However, the way in which this information is inaddor captured in the model (e.g., in
terms of its intensity or duration) depends on the finan@aeaanalyzed.

In order to shed light on the behavior of extreme events dutie subprime crisis in the US
market, we include the in-sample and backtesting estimafior the VaR. Tables 4 and 5 display
the results. The in-sample results for the VaR estimatescalsfirm the Hawkes-POT and ACD-
POT for S&P 500 returns but not for the Nasdaq returns, whecerding to the number of tests
approved Hawkes-DPOT model seems to be preferred. Obseawéhe most crucial confidence
level for the rest of the models is the 0.95 quantile, wheeshypothesis tests of independence
among the violations are mainly rejected. In line with theesailts, in the models where parameter
B1 was not estimated, the goodness of fit of the GPD for the mdrkw/ed the worst results.
Finally, regarding the backtesting analysis performedathldJS stock markets, the number of
violations observed for all VaR confidence levels remainétiiwthe expected range complying,
at the very least, with the Basel Committee recommendations.
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5. Conclusions

We have illustrated how modern EVT can be used to modeletaked risk measures, such as
VaR, applying it to negative daily log-returns on German ar®idtbck markets during the recent
crisis period. We propose an extension of the classic POTddemncluster behavior through
the SEMPP for the inter-exceedance times and for the exneedazes. Maximum likelihood
methods are used to calculate the parameters, where thexsélhg approach can follow eight
different models.

In relation to the results for the DAX index, we observe thawkes-DPOT, ACD-DPOT
and the simple ACD-POT display the best performance in-samphis means that past inter-
exceedance times can influence not only the frequency amnsityeof how these extreme events
occur but also the size of exceedances. The way the inteedance times affect the size of ex-
ceedance was modeled through the scale parameter in the ¢Ri2dns of covariates. In the
backtest, the results are impressive and almost superitietin-sample, essentially due to the
rapid adaption of models using the most recent informatfmesult that varies with the empir-
ical application is the choice of working with the inter-eedance times or with the conditional
intensity of their ground processes.

In the case of the US stock market, the results confirm the idasAOT and ACD-POT for
S&P 500 returns but not for the Nasdaq returns, where the Essl®OT model seems to be
preferred. Regarding the backtesting analysis performéadin US stock market indices during
the crisis period, for all models the number of violations@ived for all VaR confidence levels
remained within the expected range, therefore complyirtp thie Basel Committee recommen-
dations.

Concerning the question whether the inter-exceedance taegontribute to the measure-
ment accuracy of market risk in financial markets, our mainctusion is that inter-exceedance
times play an important role in the statistical analysisxafeme events. Among the two possible
strategies to incorporate these times, either as covatiagescribe the size of the extreme events
or in terms of their intensities, the estimations for bothroies did not provide a clear preference
for a specific model. Therefore, the way in which this infotima is included depends on the
specific financial instrument investigated.

Three directions for future research emerge from the resuBeing interested in long-term
behavior rather than in short-term forecasting, the sitrarieof these models is possible for esti-
mating risk measures with other time horizons. Alterndgivesing a combination of these models
to compare conservative and aggressive strategies fostigpbetween VaR models, as done by
McAleer et al. (2013), may also be a useful risk managemesttesty. Finally, other flexible forms
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for the self-exciting function could be used incorporatotger characteristics of the series, such
as trends of increasing exceedances or different regirmael,as after shocks.

Acknowledgments

We thank the reviewers for their helpful comments. The udisalaimer applies.

References

Allen, D. E., Singh, A. K., and Powell, R. J. (2013). EVT and-tesk modelling: Evidence from market indices and
volatility series .The North American Journal of Economics and Finariz355 — 369.

Balkema, A. A. and De Haan, L. (1974). Residual life time &agrage.The Annals of Probabilitys (2):792 — 804.

Basel Committee on Banking Supervision (2006). Basel terdmational Convergence of Capital Measurement and
Capital Standards: A Revised Framework - ComprehensiveidferBasel Committee on Banking Supervision

Baur, D. and Jung, R. C. (2006). Return and volatility linkadpetween the us and the german stock madkeirnal
of International Money and Finan¢@5(4):598 — 613.

Bauwens, L. and Giot, P. (2000). The logarithmic ACD model:application to the bid-ask quote process of three
NYSE stocks.Annales d’Economie et de Statistiqé®:117 — 149.

Bonfiglioli, A. and Favero, C. A. (2005). Explaining co-manents between stock markets: the case of US and
Germany.Journal of International Money and Financ24(8):1299 — 1316.

Chavez-Demoulin, V., Davison, A., and McNeil, A. (2005). Aipt process approach to value-at-risk estimation.
Quantitative Financeb (2):227 — 234.

Chavez-Demoulin, V. and McGill, J. (2012). High-frequefiicancial data modeling using hawkes procesdestnal
of Banking & Finance36:3415 — 3426.

Christoffersen, P. (1998). Evaluating interval forecaBtternational economic revievd9 (4):841 — 862.

Coles, S. (2001)An introduction to Statistical Modeling of Extreme Valu&gringer.

Daley, D. and Vere-Jones, D. (2003n Introduction to the Theory of Point Process&pringer Series in Statistics,
New York.

de Jesus, R., Ortiz, E., and Cabello, A. (2013). Long run jodedar exchange rates and extreme value behavior:
Value at risk modelingThe North American Journal of Economics and Finariz&139 — 152.

Dimpfl, T. and Peter, F. J. (2014). The impact of the finandisi€ on transatlantic information flows: an intraday
analysis.Journal of International Financial Markets, Institutiom®nd Money31:1 — 13.

Engle, R. and Manganelli, S. (2004). Cavidournal of Business and Economic Statist®(4):367 — 381.

Engle, R. and Russell, J. (1998). Autoregressive conditidaration: A new model for irregularly spaced transaction
data.Econometrica66:1127 — 1162.

Flad, M. and Jung, R. C. (2008). A common factor analysistferus and the german stock markets during overlapping
trading hoursJournal of International Financial Markets, Institutio@&d Money18(5):498 — 512.

Grammig, J. and Maurer, K. (2000). Non-monotonic hazarations and the autoregressive conditional duration
model. Econometrics JournaB:16 — 38.

Guillou, A. and Hall, P. (2001). A diagnostic for selectiretthreshold in extreme value analysi®urnal of the
Royal Statistical Society: Series B (Statistical Methodg), 63(2):293 — 305.

Hammoudeh, S., Santos, P. A., and Al-Hassan, A. (2013). Bumlerrisk management and var-based optimal port-
folios for precious metals, oil and stocksS'he North American Journal of Economics and Fingn26:318 —
334.

Hawkes, A. (1971). Spectra of some self-exciting and miytwaiciting point processe®iometrikg 58:379 — 402.

Herrera, R. (2013). Energy risk management through seitieg marked point proces&nergy Economics38:64 —

76.

Herrera, R. and Schipp, B. (2009). Self-exciting extremee/anodels on stock market crashes. In Schipp, B. and

Kramer, W., editorsStatistical Inference, Econometric Analysis and Matrigelira pages 209 — 231. Physica.

16



Herrera, R. and Schipp, B. (2013). Value at risk forecastextsgeme value models in a conditional duration frame-
work. Journal of Empirical Financg23:33 — 47.

Laurini, F. and Tawn, J. (2003). New estimators for the ertkindex and other cluster characteristié&stremes
6:189 — 211.

Lee, H.-C. and Chang, S.-L. (2013). Spillovers of currerey\yctrade returns, market risk sentiment, and u.s. market
returns.The North American Journal of Economics and Fingri@&197 — 216.

Mandilaras, A. and Bird, G. (2007). Foreign exchange markesouth-east asia 1990- 2004: An empirical analysis
of spillovers during crisis and non-crisis period$ie North American Journal of Economics and Finari®(1):41
- 57.

McAleer, M., Jimenez-Martin, J.-A., and Perez-Amaral,2013). Has the basel accord improved risk management
during the global financial crisisPhe North American Journal of Economics and Fingr@&250 — 265.

McNeil, A. and Frey, R. (2000). Estimation of tail-relatéskrmeasures for heteroscedastic financial time series: an
extreme value approactournal of Empirical Financg7:271 — 300.

Nash, J. C. and Varadhan, R. (2011). Unifying optimizatigoathms to aid software system users: optimx for r.
Journal of Statistical Softwaret3(9):1 — 14.

Pickands Ill, J. (1975). Statistical inference using exteeorder statisticsThe Annals of Statisticpages 119 — 131.

Reiss, R.-D. and Thomas, M. (2003 tatistical analysis of extreme values: with applicatibménsurance, finance,
hydrology and other fieldBirkhduser Basel.

Santos, P. A, Alves, |. F., and Hammoudeh, S. (2013). Higintjles estimation with quasi-port and dpot: An
application to value-at-risk for financial variabldhe North American Journal of Economics and Finark&487
— 496.

Santos, P. A. and Alves, M. F. (2012). Forecasting valuestwith a duration-based POT methddathematics and
Computers in Simulatiqr94:295 — 309.

Scarrott, C. and MacDonald, A. (2012). A review of extremkigdhreshold es-timation and uncertainty quantifica-
tion. REVSTAT-Statistical Journal0(1):33 — 60.

Smith, R. L. (2003) Statistics of extremes, with applications in environmestrance and finance

Smith, R. L. and Weissman, |. (1994). Estimating the extiéntex. Journal of the Royal Statistical Society, Series
B, 56:515-528.

Tancredi, A., Anderson, C., and O’Hagan, A. (2006). Accounfor threshold uncertainty in extreme value estima-
tion. Extremes9(2):87 — 106.

Yamamoto, S. (2014). Transmission of US financial and tradelss to Asian economies: Implications for spillover
of the 2007- 2009 US financial crisi$he North American Journal of Economics and Finariz&88 — 103.

17



Appendix A. Accounting for Threshold Uncertainty

Threshold uncertainty plays one of the most important ralethe utilization of EVT. The
selection of the threshold level is not unique, and a numbapproaches exist to this end (see
Guillou and Hall, 2001; Tancredi et al., 2006; Scarrott andcMonald, 2012 for a plethora of
approaches). The basic idea of all these approaches isnie-saoptimize a trade-off between
bias and variance. On one hand, a high threshold level willrdsh the size of the sample and the
variance parameter estimates will be high. On the other,falmlv threshold will enlarge the size
of the sample, reducing the variance but inducing bias iatapeter estimates, since we could be
modeling the bulk of the sample instead of the tail of theritistion.

In this paper we follow the statistics proposed by Reiss amah¥ds (2007) to determine the
threshold level, or equivalently, the number of exceedshkce

éi — median(él, R ék>

argminf (k) _is i
k ki; ’

whereéi is a shape parameter estimate for the sample fraction ofxinenees above the upper
order statistid, andf € [0,0.5] is a tuning parameter. This choice is motivated by the atratt
form of the SEMPP approach, where the only parameter that ispdated constantly is the shape
parameter, and therefore, it should remain relatively nave through different threshold levels
and time.

In Figure 4 we display the results of this statistic for atici¢ market returns analyzed using
the ACD-POT approach. The x-axis shows the number of exceeddrom the 0.95 to the 0.90
guantile, while the y-axis exhibits the tuning paramegierFrom top to bottom we observe the
results for the DAX, S&P 500 and Nasdagq returns, respegtivdie gray boxes show the interval
where the shape parameter seems to be more stable for teespa@ctrum of the tuning parameter.
For the DAX returns this interval corresponds to the 0.925948 quantile, while for the S&P
500 and Nasdaq returns these intervals correspond in be#s ¢a 0.92 - 0.91. For ease of the
exposition and to make the results comparable, we definehtiesitold levels for all the stock
market returns analyzed at the 0.92 quantile.
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Appendix B. Tables

DAX S&P 500 Nasdaq

N° Observations 5720 5688 5688
Std. dev 1.455 1.170 1.544
Minimum -9.871 -9.469 -10.168

Mean 0.032 0.028 0.039
Maximum 10.797 10.957 13.254

Kurtosis 4,671 8.691 5.856
Skewness -0.099 -0.238 -0.077

Jarque-Bera test 5209.15(0) 17976.35(0) 8144.39 (0)

Phillips-Perron Unit Root Test -17.723 (0.01) -18.221 (0) 7.1BD9 (0)

Table 1: Descriptive statistics of daily log-returns foe thAX, S&P 500 and Nasdagq indices. p-values are in paren-
theses.
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Models u 1] a b y 1) & Bo B Log-like AIC BIC
DAX Index
Hawkes-POT 0.029 0.023 0.060 0.367 0.021 0.451 0.132 -1445.2894.490 2949.061
(0.005) (0.005) (0.010) (0.049) (0.009) (0.050) (0.026)
ACD-POT 0.129 0.034 0.733 1.175 1.592 0.048 0.426 4171 -1456.2%28.306 2979.244
(0.082) (0.027) (0.059) (0.361) (0.202) (0.043) (0.075) (0.670)
DPOT 0.084 2.491 0.298  -264.554 535.108 554.210
(0.056) (0.478) (0.058)
Hawkes-DPOT 0.015 0.029 0.045 0.121 0.084 2.491 0.298 -1150.2315.864 2360.435
(0.003) (0.008) (0.011) (0.089) (0.056) (0.478) (0.058)
ACD-DPOT 0.257 0.049 0.626 1.034 1.453 0.084 2.491 0.298 -1151.2%19.018 2369.956
(0.207) (0.049) (0.105) (0.398) (0.206) (0.056) (0.477) (0.058)
DPOT (B1 = 0.75) 0.238 8.593 0.75 -367.1289 740.258  759.356
(0.057)  (0.668)
Hawkes-DPOT B, =0.75) 0.015 0.029 0.045 0.121 0.238 8.593 0.75 -1582.78379.490 3224.061
(0.005)  (0.006) (0.009) (0.086) (0.057) (0.669)
ACD-DPOT (3, =0.75) 0.068 0.010 0.769 1.620 1.850 0.238 8.593 0.75 -1480.02376.046 3026.984
(0.103) (0.017) (0.111) (0.470) (0.267) (0.057) (0.668)
S&P 500 Index
Hawkes-POT 0.021 0.018 0.036 0.459 0.001 0.342 0.054 -1304.9923.990 2668.551
(0.005)  (0.004) (0.008) (0.056) (0.001) (0.041) (0.014)
ACD-POT 0.217 0.066 0.707 0.939 1.559 0.075 0.364 1.934 -1306.2629.854 2680.781
(0.096) (0.028) (0.054) (0.244) (0.152) (0.049) (0.063) (0.487)
DPOT 0.067 1.413 0.263 -203.074 412.148 431.246
(0.049) (0.267) (0.058)
Hawkes-DPOT 0.014 0.014 0.020 0.240 0.067 1.413 0.263 -1315.@@915.398 2689.959
(0.004) (0.004) (0.005) (0.136) (0.049) (0.266) (0.058)
ACD-DPOT 0.212 0.061 0.737 0.940 1.603 0.067 1.413 0.263 -1306.2828.866 2679.793
(0.096) (0.026) (0.055) (0.240) (0.155) (0.049) (0.267) (0.058)
DPOT (1 =0.75) 0.248 5.858 0.75 -232.817 471.634 490.73
(0.0589) (0.461)
Hawkes-DPOT 8, =0.75) 0.014 0.014 0.020 0.240 0.248 5.858 0.75  -1345.42704.884 2749.445
(0.004) (0.004) (0.005) (0.136) (0.059) (0.461)
ACD-DPOT (3, =0.75) 0.212 0.061 0.737 0.940 1.603 0.248 5.858 0.75 -1336.22688.354 2739.281
(0.096) (0.026) (0.055) (0.240) (0.155) (0.059) (0.462)
Nasdaq Index
Hawkes-POT 0.021 0.016 0.032 0.308 0.001 0.442 0.064 -1691.B396.366 3440.927
(0.004) (0.004) (0.007) (0.043) (0.002) (0.053) (0.017)
ACD-POT 0.065 0.021 0.767 1.689 2.102 0.006 0.522 2910 -1693.340D2.428 3453.355
(0.046) (0.020) (0.041) (0.544) (0.334) (0.042) (0.080) (0.448)
DPOT 0.012 2.645 0.325 -461.037 928.074 947.172
(0.041)  (0.360) (0.048)
Hawkes-DPOT 0.016 0.014 0.021 0.209 0.012 2.647 0.325 -1712.34B8.882 3483.443
(0.004) (0.004) (0.005) (0.076) (0.041) (0.360) (0.048)
ACD-DPOT 0.034 0.008 0.798 2.161 2.413 0.012 2.647 0.325 -1696.348.632 3459.559
(0.045) (0.012) (0.052) (0.588) (0.349) (0.041) (0.360) (0.048)
DPOT (31 =0.75) 0.185 7.868 0.75 -493.332 992.664 1011.762
(0.046)  (0.521)
Hawkes-DPOT @, =0.75) 0.016 0.014 0.021 0.209 0.185 7.868 0.75  -1744.73603.472 3548.033
(0.004) (0.004) (0.005) (0.076) (0.046) (0.521)
ACD-DPOT (31 =0.75) 0.034 0.008 0.798 2.161 2.413 0.185 7.868 0.75 -1728.63473.222 3524.149
(0.045) (0.012) (0.052) (0.588) (0.349) (0.046) (0.521)

Table 2: Results for the DAX, S&P500 and Nasdaq stock magtetms Standard deviations are shown in parenthe-
ses. Log-like are the results of the maximization of thelleglihood estimation, while AIC and BIC are the Akaike

information criterion and the Bayesian information ciider, respectively.
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Models GoF POT VaR in-sample VaR backtest
BlLw KSv « Viol. LR, LRpd LRec DQnit  DQuar Viol. LRyc LRng LRec DQnit  DQvar
Hawkes-POT 0.43 0.06 0.95 204 043 065 0.66 0.66 0.78 77 0.3w95 0.69 0.93 0.99
0.99 41 0.76 0.01 0.02 0.01 0.01 16 0.60 0.56 0.73 0.54 0.61
0.999 3 051 095 080 0.9 0.56 0 0.09 1.00 0.25 - -
ACD-POT 0.29 050 0.95 228 0.37 0.98 0.67 0.98 095 83 0.12 0.96.30 0.95 0.94
0.99 43 1.00 0.08 0.21 0.08 0.00 17 043 052 060 0.52 0.80
0.999 6 0.44 0.90 0.74 0.90 0.75 2 0.63 0.94 0.89 0.94 1.00
DPOT 0.06 0.10 0.95 233 0.22 0.00 0.00 0.00 0.00 68 0.81 0.3462 0. 0.36 0.00
0.99 56 0.06 0.04 0.02 0.04 0.00 9 0.15 073 034 0.73 0.17
0.999 3 051 095 080 0.9 0.74 0 0.09 1.00 0.25 - -
Hawkes-DPOT 0.06 0.10 0.95 215 099 093 100 0.94 0.00 69 1 0.99.38 0.67 0.39 0.00
0.99 38 043 0.05 0.10 0.05 0.14 9 0.15 073 034 0.73 0.17
0.999 6 0.44 090 0.74 0.90 0.17 0 0.09 1.00 0.25 - -
ACD-DPOT 0.06 0.10 0.95 223 059 031 051 032 0.00 77 0.39920. 0.69 0.93 0.94
0.99 49 037 013 021 0.13 0.19 11 040 068 0.65 0.68 0.69
0.999 6 044 090 0.74 0.9 0.09 0 0.09 1.00 0.25 - -
DPOT (3, =0.75) 0.00 0.00 0.95 246 0.03 0.00 0.00 0.00 0.00 74 0.62 0.28 0 0.50.30 0.00
0.99 56 0.06 0.04 0.02 0.04 0.01 21 0.08 042 0.16 043 0.34
0.999 8 0.11 086 028 0.86 0.06 1 0.72 097 094 097 0.43
Hawkes-DPOT§; =0.75) 0.00 0.00 0.95 246 0.03 0.00 0.00 0.00 0.00 74 0.62 0.28 0 0.50.30 0.00
0.99 56 0.06 0.04 0.02 0.04 0.01 21 0.08 042 016 043 0.34
0.999 8 0.11 086 0.28 0.86 0.06 1 0.72 097 094 097 0.43
ACD-DPOT 31 =0.75) 0.00 0.00 0.95 187 004 051 011 052 0.04 80 0.23 0.81 7 0.40.82 0.61
0.99 55 0.08 0.01 0.00 0.01 0.00 21 0.08 032 013 0.32 0.54
0.999 14 0.00 0.04 0.00 0.04 0.00 2 063 094 089 094 0.24

Table 3: Summary of different statistics for comparing thedels using the goodness of fit, and a number of statisticairacy tests for the VaR in-sample
and in the backtest for the DAX index. Entries in the columresthe significance levels (p-values) of the respectives tegith the exception of the level

and the number of violations at the VaR (Viol.). The cellshwit’ values mean that the test cannot be estimated. Numbelbgdrvations in the in-sample
period is 4304. Number of observations in the backtest dasid400.



Models GoF POT VaR in-sample VaR backtest
BLw KSv a Viol. LRy LRng LR DQuit DQuar Viol. LRy LRng LRc DQnt DQuar
Hawkes-POT 0.86 0.39 0.95 194 0.14 0.08 0.07 0.09 0.21 62 0.4161 0.65 0.62 0.82
0.99 37 035 042 047 042 0.34 13 0.86 0.63 0.88 0.63 0.07
0.999 6 0.44 090 073 0.90 0.25 0 0.10 1 0.26 - -
ACD-POT 0.73 051 0.95 213 090 010 025 011 0.25 67 0.76 4 0.40.71  0.45 0.72
0.99 40 065 039 062 0.39 0.24 17 042 052 058 0.52 0.8
0.999 8 0.11 087 0.28 0.86 0.64 2 063 094 089 094 1
DPOT 0.74 0.16 0.95 230 0.29 0 0 0 0 73 0.67 028 051 0.29 0
0.99 45 0.76 0.09 0.23 0.09 0 5 0.01 085 0.02 0.85 0.01
0.999 6 0.44 090 073 0.90 0.64 0 0.10 1 0.25 - -
Hawkes-DPOT 0.74 0.16 0.95 193 0.12 002 0.02 0.02 0 71 0.8523 0.0.47 0.24
0.99 37 035 042 047 043 0.73 4 0 0.88 0.01 0.88 0.05
0.999 8 0.11 086 0.28 0.86 0.99 0 0.10 1 0.25 - -
ACD-DPOT 0.74 0.16 0.95 202 0.36 0.02 0.04 0.02 0.01 59 0.19 73 0. 0.39 0.74 0.49
0.99 42 088 036 065 0.36 0.35 14 098 059 0.87 0.6 0.74 N
0.999 8 0.11 0.86 0.28 0.86 0.92 0 0.10 1 0.25 - -
DPOT (3, = 0.75) 0.01 0 0.95 243  0.05 0 0 0 0 72 076 025 049 0.26 0
0.99 45 0.76 0.50 0.76 0.50 0.77 9 0.16 0.73 0.35 0.73 0.65
0.999 8 0.11 086 0.28 0.86 0.94 0 0.10 1 0.25 - -
Hawkes-DPOT 8, =0.75) 0.01 0 0.95 175 0 0.29 0.01 0.30 0.05 72 0.76 0.25 0.49 0.26 0
0.99 60 0.01 0.06 0.01 0.06 0.02 9 016 073 035 0.73 0.65
0.999 11 0.01 0.81 0.03 0.81 0.02 0 0.10 1 0.25 - -
ACD-DPOT (B1 = 0.75) 0.01 0 0.95 171 0 0.23 0 0.24 0.29 55 0.06 0.9 0.18 0.9 0.48
0.99 64 0 0.34 0.01 0.34 0.01 15 0.77 0.57 0.81 0.57 0.75
0.999 13 0 0.78 0 0.78 0.13 2 063 094 089 094 0.77

Table 4: Summary of different statistics for comparing thedelds using the goodness of fit, and a number of statisticairacy tests for the VaR in-sample
and in the backtest for the S&P 500 index. Entries in the cakuare the significance levels (p-values) of the respeatists t with the exception of the
o level and the number of violations at the VaR (Viol.). Thele&ith “-” values mean that the test cannot be estimated. bamof observations in the
in-sample period is 4298. Number of observations in the testlperiod is 1390.
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Models GoF POT VaR in-sample VaR backtest

BlLw KSv « Viol. LR, LRpd LRec DQnit  DQuar Viol. LRyc LRng LRec DQnit  DQvar

Hawkes-POT 0.89 0.12 0.95 195 0.18 0.17 0.16 0.18 0.18 69 0.3w67 0.63 0.67 0.88
0.99 40 0.67 0.01 0.02 0.01 0.02 10 0.47 0.07 0.14 0.07 0.17

0.999 7 023 088 048 0.88 0.65 0 0.11 1 0.29 - -

ACD-POT 0.03 0.60 0.95 186 0.04 0.02 0.01 0.02 0.03 83 0.11 4 0.60.24 0.65 0.09
0.99 42 0.88 0.07 0.19 0.07 0.19 12 0.6 0.09 0.21 0.09 0.12
0.999 4 0.88 0.93 0.99 0.93 0.30 4 0.07 0.88 0.20 0.88 0.97

DPOT 0.08 042 0.95 222 0.62 0 0 0 0 70 0.95 0.8 0.96 0.80 0
0.99 55 0.08 0.01 0 0.01 0 16 058 0.18 034 0.18 0.01
0.999 6 044 090 0.73 0.90 0.35 3 024 091 049 0091 0.67

Hawkes-DPOT 0.08 0.42 0.95 190 0.08 0.12 0.06 0.13 0 63 0.4293 0. 0.72 0.93 0
0.99 41 0.76 0.06 0.17 0.07 0.01 15 0.77 015 034 0.15 0.01
0.999 5 074 091 094 0091 0.78 3 024 091 049 0091 0.67

ACD-DPOT 0.08 042 0.95 194 0.14 0 0 0 0 76 043 093 0.73 094 970.
0.99 52 0.18 0.03 0.04 0.03 0.05 15 0.77 015 034 0.15 0.36
0.999 6 044 090 0.73 0.90 0.97 2 063 094 089 094 0.99

DPOT (3, = 0.75) 0.01 0.02 0.95 235 0.16 0 0 0 0 79 025 080 050 0.81 0
0.99 64 0 0.02 0 0.02 0 17 042 020 032 0.20 0.08
0.999 9 005 085 014 0.85 0.92 3 024 091 049 0091 0.97

Hawkes-DPOTB, =0.75) 0.01 0.02 0.95 174 0 0.07 0 0.08 0.01 64 049 054 066 055250
0.99 53 0.14 0 0.01 0 0.02 16 058 0.18 034 0.18 0.40
0.999 10 0.02 083 0.06 0.83 0.29 3 024 091 049 091 0.41

ACD-DPOT 31 =0.75) 0.01 0.02 0.95 176 0.01 0.01 0 0.01 0 63 042 050 057 051.150
0.99 56 0.06 0.04 0.02 0.04 0.13 16 058 0.18 0.34 0.18 0.38
0.999 10 0.02 083 0.06 0.83 0.75 3 024 091 049 0091 0.96

Table 5: Summary of different statistics for comparing thedels using the goodness of fit, and a number of statisticairacy tests for the VaR in-sample
and in the backtest for the Nasdag index. Entries in the cofuane the significance levels (p-values) of the respeasts twith the exception of thelevel

and the number of violations at the VaR (Viol.). The cellshwit’ values mean that the test cannot be estimated. Numbelbgdrvations in the in-sample
period is 4298. Number of observations in the backtest dasid390.



Appendix C. Figures
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Figure 1: From top to bottom and from left to right, we obsetive DAX index from January 2, 1991 to January
18, 2008, the most important losses for the returns of thiexnthe autocorrelation function for the inter-excee@anc
times of these losses, and a scatter plot of marks and irteedance times preceding the last three events (i.e.,
X3="t—t3).
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Figure 2: VaR estimation in-sample at the 0.99 confidencel fiew the eight models fitted to the DAX returns. The
black lines are the VaR estimates, whiteare the violations. From top to bottom and from left to righe models
are: Hawkes-POT, ACD-POT, DPOTy(= 0.75), DPOT, Hawkes-DPOTp{ = 0.75), ACD-DPOT 3; = 0.75),
Hawkes-DPOT and ACD-DPOT.
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Figure 3: VaR estimation for the backtesting at the 0.99 denite level for the eight models fitted to the DAX
returns. The black lines are the VaR estimates, wkilare the violations. From top to bottom and from left to
right, the models are: Hawkes-POT, ACD-POT, DP@T £ 0.75), DPOT, Hawkes-DPOTpg = 0.75), ACD-DPOT

(B1 = 0.75), Hawkes-DPOT and ACD-DPOT.
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Figure 4: Results of the statistics proposed by Reiss anth@k@2007) to determine the threshold level for the returns
analyzed. From top to bottom the results for the DAX, S&P 500 Nasdaq returns, respectively. The gray boxes
show the interval where the shape parameter seems to be table for the entire spectrum of the tuning parameter.
For the DAX returns this interval corresponds to the 0.929186 quantile, while for the S&P 500 and Nasdaq returns
these intervals correspond in both cases to the 0.92 - 0 &ititp!
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